forked from rezacsedu/Drug-Drug-Interaction-Prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RDF2Vec.py
282 lines (228 loc) · 9.01 KB
/
RDF2Vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import argparse
import gzip, os, csv
import numpy as np
import random
import time
import networkx as nx
import findspark
findspark.init("/home/rkarim/spark-2.3.1-bin-hadoop2.7/")
from pyspark import SparkConf, SparkContext
if False:
sc.stop()
config = SparkConf()
config.setMaster("local[5]")
config.set("spark.executor.memory", "8g")
config.set('spark.driver.memory', '12g')
config.set("spark.memory.offHeap.enabled",True)
config.set("spark.memory.offHeap.size","20g")
sc = SparkContext(conf=config)
print (sc)
def addTriple(net, source, target, edge):
if source in net:
if target in net[source]:
net[source][target].add(edge)
else:
net[source][target]= set([edge])
else:
net[source]={}
net[source][target] = set([edge])
return net
def getLinks(net, source):
if source not in net:
return {}
return net[source]
def randomWalkUniform(triples, startNode, max_depth=5):
next_node =startNode
path = 'n'+str(startNode)+'->'
for i in range(max_depth):
neighs = getLinks(triples,next_node)
#print (neighs)
if len(neighs) == 0: break
weights = []
queue = []
for neigh in neighs:
for edge in neighs[neigh]:
queue.append((edge,neigh))
weights.append(1.0)
edge, next_node = random.choice(queue)
path = path+ 'e'+str(edge)+'->'
path = path+ 'n'+str(next_node)+'->'
return path
def preprocess(folders, filename):
entity2id = {}
relation2id = {}
triples = {}
ent_counter = 0
rel_counter = 0
for dirname in folders:
for fname in os.listdir(dirname):
if not filename in fname: continue
print (fname)
gzfile= gzip.open(os.path.join(dirname, fname), mode='rt', encoding='utf-8')
for line in csv.reader(gzfile, delimiter=' ', quotechar='"'):
h = line[0]
r = line[1]
t = line[2]
if not t.startswith('<'): continue
if 'ddi-interactor-in' in r:
continue
if h in entity2id:
hid = entity2id[h]
else:
entity2id[h] = ent_counter
ent_counter+=1
hid = entity2id[h]
if t in entity2id:
tid = entity2id[t]
else:
entity2id[t] = ent_counter
ent_counter+=1
tid = entity2id[t]
if r in relation2id:
rid = relation2id[r]
else:
relation2id[r] = rel_counter
rel_counter+=1
rid = relation2id[r]
addTriple(triples, hid, tid, rid)
print ('Relation:',rel_counter, ' Entity:',ent_counter)
return entity2id,relation2id,triples
folders = ['/home/rkarim/DDI/data/drugbank/v5/']
fileext = 'nq.gz'
entity2id, relation2id, triples = preprocess(folders, fileext)
num_triples=0
for source in triples:
for target in triples[source]:
num_triples+=len(triples[source][target])
print ('Number of triples',num_triples)
walks = 5
path_depth = 10
paths = randomNWalkUniform(triples, 100, walks, path_depth)
print('\n'.join(paths))
entities = list(entity2id.values())
b_triples = sc.broadcast(triples)
import os
os.environ['HADOOP_HOME'] = "C:/hadoop"
folder = 'C:/Users/admin-karim/Downloads/GraphEmbedding4DDI-master/GraphEmbedding4DDI-master/data/walks5/'
#if not os.path.isdir(folder):
#os.mkdir(folder)
walks = 250
maxDepth = 5
for path_depth in range(1,maxDepth):
filename = folder+'randwalks_n%d_depth%d_pagerank_uniform.txt'%(walks, path_depth)
print (filename)
start_time =time.time()
rdd = sc.parallelize(entities).flatMap(lambda n: randomNWalkUniform(b_triples.value, n, walks, path_depth)).persist()
rdd.saveAsTextFile(filename)
elapsed_time = time.time() - start_time
print ('Time elapsed to generate features:',time.strftime("%H:%M:%S", time.gmtime(elapsed_time)))
def saveData(entity2id, relation2id, triples, dirname):
if not os.path.isdir(dirname):
os.mkdir(dirname)
entity2id_file= open(os.path.join(dirname, 'entity2id.txt'),'w', encoding='utf-8')
relation2id_file = open(os.path.join(dirname, 'relation2id.txt'),'w', encoding='utf-8')
train_file = open(os.path.join(dirname, 'train2id.txt'),'w', encoding='utf-8')
train_file.write(str(num_triples)+'\n')
for source in triples:
for target in triples[source]:
hid=source
tid =target
for rid in triples[source][target]:
train_file.write("%d %d %d\n"%(hid,tid,rid))
entity2id_file.write(str(len(entity2id))+'\n')
for e in sorted(entity2id, key=entity2id.__getitem__):
entity2id_file.write(e+'\t'+str(entity2id[e])+'\n')
relation2id_file.write(str(len(relation2id))+'\n')
for r in sorted(relation2id, key=relation2id.__getitem__):
relation2id_file.write(r+'\t'+str(relation2id[r])+'\n')
train_file.close()
entity2id_file.close()
relation2id_file.close()
dirname = 'DB5/'
saveData(entity2id, relation2id, triples, dirname)
import gensim
class MySentences(object):
def __init__(self, dirname, filename):
self.dirname = dirname
self.filename = filename
def __iter__(self):
print ('Processing ',self.filename)
for subfname in os.listdir(self.dirname):
if not self.filename in subfname: continue
fpath = os.path.join(self.dirname, subfname)
for fname in os.listdir(fpath):
if not 'part' in fname: continue
if '.crc' in fname: continue
try:
for line in open(os.path.join(fpath, fname), mode='r'):
line = line.rstrip('\n')
words = line.split("->")
yield words
except Exception:
print("Failed reading file:")
print(fname)
def extractFeatureVector(model, drugs, id2entity, output):
header="Entity"
ns = "n"
first = ns+str(drugs[0])
for i in range(len(model.wv[first])):
header=header+"\tfeature"+str(i)
fw=open(output,'w')
fw.write(header+"\n")
for id_ in sorted(drugs):
nid =ns+str(id_)
if (nid) not in model.wv:
print (nid)
continue
vec = model.wv[nid]
vec = "\t".join(map(str,vec))
fw.write(id2entity[id_]+'\t'+str(vec)+'\n')
fw.close()
maxDepth = 5
def trainModel(drugs, id2entity, datafilename, model_output, vector_output, pattern, maxDepth):
if not os.path.isdir(model_output):
os.mkdir(model_output)
if not os.path.isdir(vector_output):
os.mkdir(vector_output)
output = model_output + pattern +'/'
if not os.path.isdir(output):
os.mkdir(output)
sentences = MySentences(datafilename, filename=pattern) # a memory-friendly iterator
word2vecModel = gensim.models.Word2Vec(size=300, workers=10, window=5, sg=1, negative=15, iter=20)
word2vecModel.build_vocab(sentences)
corpus_count = word2vecModel.corpus_count
del word2vecModel
#sg/cbow features iterations window negative hops random walks
sgModel = gensim.models.Word2Vec(size=300, workers=10, window=5, sg=1, negative=15, iter = 20)
sgModel.build_vocab(sentences)
sgModel.train(sentences, total_examples = corpus_count, epochs = 10)
modelName = 'RDF2Vec_full_sg_300_5_5_15_2_500' + '_d' + str(maxDepth)
sgModel.save(output + modelName)
extractFeatureVector(sgModel, drugs, id2entity, vector_output + modelName +'_' + pattern + '.txt')
del sgModel
#cbow 300
cbowModel = gensim.models.Word2Vec(size=300, workers=10, window=5, sg=0, iter=20,cbow_mean=1, alpha = 0.05)
cbowModel.build_vocab(sentences)
cbowModel.train(sentences, total_examples=corpus_count, epochs = 10)
modelName = 'RDF2Vec_full_cbow_300_5_5_2_500'+'_d'+str(maxDepth)
cbowModel.save(output+ modelName)
extractFeatureVector(cbowModel, drugs, id2entity, vector_output+modelName +'_'+pattern+'.txt')
del cbowModel
import pandas as pd
ddi_df = pd.read_csv('/home/rkarim/DDI/input/result.csv',sep=',')
db_ns ='http://bio2rdf.org/drugbank:'
ddi_df.Drug1 = '<'+db_ns+ddi_df.Drug1+'>'
ddi_df.Drug2 = '<'+db_ns+ddi_df.Drug2+'>'
db_entities = set()
drugs = set(ddi_df.Drug1.unique()).union(ddi_df.Drug2.unique())
for dbid in drugs:
if dbid in entity2id:
db_entities.add(entity2id[dbid])
db_entities =list(db_entities)
print(len(db_entities))
id2entity = {value:key for key,value in entity2id.items()}
datafilename = '/home/rkarim/DDI/data/walks5/'
model_output = '/home/rkarim/DDI/models/RDF2Vec_model/'
pattern = 'uniform'
vector_output = '/home/rkarim/DDI/vectors/RDF2Vec/'
trainModel(db_entities, id2entity, datafilename, model_output, vector_output, pattern, maxDepth)