forked from deepchem/deepchem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdelaney_weave.py
45 lines (37 loc) · 1.11 KB
/
delaney_weave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"""
Script that trains weave models on delaney dataset.
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
import numpy as np
np.random.seed(123)
import tensorflow as tf
tf.random.set_seed(123)
import deepchem as dc
# Load Delaney dataset
delaney_tasks, delaney_datasets, transformers = dc.molnet.load_delaney(
featurizer='Weave', split='index')
train_dataset, valid_dataset, test_dataset = delaney_datasets
# Fit models
metric = dc.metrics.Metric(dc.metrics.pearson_r2_score, np.mean)
n_atom_feat = 75
n_pair_feat = 14
# Batch size of models
batch_size = 64
n_feat = 128
model = dc.models.WeaveModel(
len(delaney_tasks),
batch_size=batch_size,
learning_rate=1e-3,
use_queue=False,
mode='regression')
# Fit trained model
model.fit(train_dataset, nb_epoch=50, checkpoint_interval=100)
print("Evaluating model")
train_scores = model.evaluate(train_dataset, [metric], transformers)
valid_scores = model.evaluate(valid_dataset, [metric], transformers)
print("Train scores")
print(train_scores)
print("Validation scores")
print(valid_scores)