forked from OATML/EVE
-
Notifications
You must be signed in to change notification settings - Fork 35
/
compute_evol_indices.py
97 lines (83 loc) · 5.09 KB
/
compute_evol_indices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os,sys
import json
import argparse
import pandas as pd
import torch
from EVE import VAE_model
from utils import data_utils
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Evol indices')
parser.add_argument('--MSA_data_folder', type=str, help='Folder where MSAs are stored')
parser.add_argument('--MSA_list', type=str, help='List of proteins and corresponding MSA file name')
parser.add_argument('--protein_index', type=int, help='Row index of protein in input mapping file')
parser.add_argument('--MSA_weights_location', type=str, help='Location where weights for each sequence in the MSA will be stored')
parser.add_argument('--theta_reweighting', type=float, help='Parameters for MSA sequence re-weighting')
parser.add_argument('--VAE_checkpoint_location', type=str, help='Location where VAE model checkpoints will be stored')
parser.add_argument('--model_name_suffix', default='Jan1', type=str, help='model checkpoint name is the protein name followed by this suffix')
parser.add_argument('--model_parameters_location', type=str, help='Location of VAE model parameters')
parser.add_argument('--computation_mode', type=str, help='Computes evol indices for all single AA mutations or for a passed in list of mutations (singles or multiples) [all_singles,input_mutations_list]')
parser.add_argument('--all_singles_mutations_folder', type=str, help='Location for the list of generated single AA mutations')
parser.add_argument('--mutations_location', type=str, help='Location of all mutations to compute the evol indices for')
parser.add_argument('--output_evol_indices_location', type=str, help='Output location of computed evol indices')
parser.add_argument('--output_evol_indices_filename_suffix', default='', type=str, help='(Optional) Suffix to be added to output filename')
parser.add_argument('--num_samples_compute_evol_indices', type=int, help='Num of samples to approximate delta elbo when computing evol indices')
parser.add_argument('--batch_size', default=256, type=int, help='Batch size when computing evol indices')
args = parser.parse_args()
mapping_file = pd.read_csv(args.MSA_list)
protein_name = mapping_file['protein_name'][args.protein_index]
msa_location = args.MSA_data_folder + os.sep + mapping_file['msa_location'][args.protein_index]
print("Protein name: "+str(protein_name))
print("MSA file: "+str(msa_location))
if args.theta_reweighting is not None:
theta = args.theta_reweighting
else:
try:
theta = float(mapping_file['theta'][args.protein_index])
except:
theta = 0.2
print("Theta MSA re-weighting: "+str(theta))
data = data_utils.MSA_processing(
MSA_location=msa_location,
theta=theta,
use_weights=True,
weights_location=args.MSA_weights_location + os.sep + protein_name + '_theta_' + str(theta) + '.npy'
)
if args.computation_mode=="all_singles":
data.save_all_singles(output_filename=args.all_singles_mutations_folder + os.sep + protein_name + "_all_singles.csv")
args.mutations_location = args.all_singles_mutations_folder + os.sep + protein_name + "_all_singles.csv"
else:
args.mutations_location = args.mutations_location + os.sep + protein_name + ".csv"
model_name = protein_name + "_" + args.model_name_suffix
print("Model name: "+str(model_name))
model_params = json.load(open(args.model_parameters_location))
model = VAE_model.VAE_model(
model_name=model_name,
data=data,
encoder_parameters=model_params["encoder_parameters"],
decoder_parameters=model_params["decoder_parameters"],
random_seed=42
)
model = model.to(model.device)
try:
checkpoint_name = str(args.VAE_checkpoint_location) + os.sep + model_name + "_final"
checkpoint = torch.load(checkpoint_name)
model.load_state_dict(checkpoint['model_state_dict'])
print("Initialized VAE with checkpoint '{}' ".format(checkpoint_name))
except:
print("Unable to locate VAE model checkpoint")
sys.exit(0)
list_valid_mutations, evol_indices, _, _ = model.compute_evol_indices(msa_data=data,
list_mutations_location=args.mutations_location,
num_samples=args.num_samples_compute_evol_indices,
batch_size=args.batch_size)
df = {}
df['protein_name'] = protein_name
df['mutations'] = list_valid_mutations
df['evol_indices'] = evol_indices
df = pd.DataFrame(df)
evol_indices_output_filename = args.output_evol_indices_location+os.sep+protein_name+'_'+str(args.num_samples_compute_evol_indices)+'_samples'+args.output_evol_indices_filename_suffix+'.csv'
try:
keep_header = os.stat(evol_indices_output_filename).st_size == 0
except:
keep_header=True
df.to_csv(path_or_buf=evol_indices_output_filename, index=False, mode='a', header=keep_header)