-
Notifications
You must be signed in to change notification settings - Fork 10
/
NLKirchhoffLoveShell.h
74 lines (62 loc) · 2.88 KB
/
NLKirchhoffLoveShell.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// $Id$
//==============================================================================
//!
//! \file NLKirchhoffLoveShell.h
//!
//! \date Apr 20 2018
//!
//! \author Simen Skogholt Haave and Marit Gaarder Rakvaag / NTNU
//!
//! \brief Class for nonlinear Kirchhoff-Love thin shell problems.
//!
//==============================================================================
#ifndef _NL_KIRCHHOFF_LOVE_SHELL_H
#define _NL_KIRCHHOFF_LOVE_SHELL_H
#include "KirchhoffLoveShell.h"
/*!
\brief Class representing the integrand of nonlinear thin shell problems.
\details The formulation is based on Kirchhoff-Love shell theory
and therefore requires second-derivatives of the basis functions.
*/
class NLKirchhoffLoveShell : public KirchhoffLoveShell
{
public:
//! \brief Default constructor.
NLKirchhoffLoveShell() {}
//! \brief Empty destructor,
virtual ~NLKirchhoffLoveShell() {}
//! \brief Defines the solution mode before the element assembly is started.
virtual void setMode(SIM::SolutionMode mode);
//! \brief Defines which FE quantities are needed by the integrand.
virtual int getIntegrandType() const;
using KirchhoffLoveShell::evalInt;
//! \brief Evaluates the integrand at an interior point.
//! \param elmInt The local integral object to receive the contributions
//! \param[in] fe Finite element data of current integration point
//! \param[in] X Cartesian coordinates of current integration point
virtual bool evalInt(LocalIntegral& elmInt, const FiniteElement& fe,
const Vec3& X) const;
using KirchhoffLoveShell::evalSol;
//! \brief Evaluates the finite element (FE) solution at an integration point.
//! \param[out] sm The FE in-plane stress resultant values at current point
//! \param[out] sb The FE bending stress resultant values at current point
//! \param[in] eV Element solution vectors
//! \param[in] fe Finite element data at current point
//! \param[in] X Cartesian coordinates of current point
virtual bool evalSol(Vector& sm, Vector& sb, const Vectors& eV,
const FiniteElement& fe, const Vec3& X, bool) const;
private:
//! \brief Evaluates the stiffness matrix and internal forces integrand.
//! \param EK Element matrix to receive the stiffness contributions
//! \param ES Element vector to receive the internal forc contributions
//! \param[in] fe Finite element data at current point
//! \param[in] G0 Co-variant basis vectors at the reference configuration
//! \param[in] Gn Co-variant basis vectors at the actual configuration
//! \param[in] H0 Hessian at the reference configuration
//! \param[in] Hn Hessian at the actual configuration
//! \param[in] X Cartesian coordinates of current point
bool evalKandS(Matrix& EK, Vector& ES, const FiniteElement& fe,
const Matrix& G0, const Matrix& Gn,
const Matrix& H0, const Matrix& Hn, const Vec3& X) const;
};
#endif