-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathdata_utils.py
287 lines (240 loc) · 11.1 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import time
import os
import random
import numpy as np
import torch
import torch.utils.data
import commons
from mel_processing import spectrogram_torch, spec_to_mel_torch
from utils import load_wav_to_torch, load_filepaths_and_text, transform
#import h5py
"""Multi speaker version"""
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, audiopaths, hparams):
self.audiopaths = load_filepaths_and_text(audiopaths)
self.max_wav_value = hparams.data.max_wav_value
self.sampling_rate = hparams.data.sampling_rate
self.filter_length = hparams.data.filter_length
self.hop_length = hparams.data.hop_length
self.win_length = hparams.data.win_length
self.sampling_rate = hparams.data.sampling_rate
self.use_sr = hparams.train.use_sr
self.use_spk = hparams.model.use_spk
self.spec_len = hparams.train.max_speclen
random.seed(1234)
random.shuffle(self.audiopaths)
self._filter()
def _filter(self):
"""
Filter text & store spec lengths
"""
# Store spectrogram lengths for Bucketing
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
# spec_length = wav_length // hop_length
lengths = []
for audiopath in self.audiopaths:
lengths.append(os.path.getsize(audiopath[0]) // (2 * self.hop_length))
self.lengths = lengths
def get_audio(self, filename):
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
spec = torch.load(spec_filename)
else:
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename)
if self.use_spk:
spk_filename = filename.replace(".wav", ".npy")
spk_filename = spk_filename.replace("DUMMY", "dataset/spk")
spk = torch.from_numpy(np.load(spk_filename))
if not self.use_sr:
c_filename = filename.replace(".wav", ".pt")
c_filename = c_filename.replace("DUMMY", "dataset/wavlm")
c = torch.load(c_filename).squeeze(0)
else:
i = random.randint(68,92)
'''
basename = os.path.basename(filename)[:-4]
spkname = basename[:4]
#print(basename, spkname)
with h5py.File(f"dataset/rs/wavlm/{spkname}/{i}.hdf5","r") as f:
c = torch.from_numpy(f[basename][()]).squeeze(0)
#print(c)
'''
c_filename = filename.replace(".wav", f"_{i}.pt")
c_filename = c_filename.replace("DUMMY", "dataset/sr/wavlm")
c = torch.load(c_filename).squeeze(0)
# 2023.01.10 update: code below can deteriorate model performance
# I added these code during cleaning up, thinking that it can offer better performance than my provided checkpoints, but actually it does the opposite.
# What an act of 'adding legs to a snake'!
'''
lmin = min(c.size(-1), spec.size(-1))
spec, c = spec[:, :lmin], c[:, :lmin]
audio_norm = audio_norm[:, :lmin*self.hop_length]
_spec, _c, _audio_norm = spec, c, audio_norm
while spec.size(-1) < self.spec_len:
spec = torch.cat((spec, _spec), -1)
c = torch.cat((c, _c), -1)
audio_norm = torch.cat((audio_norm, _audio_norm), -1)
start = random.randint(0, spec.size(-1) - self.spec_len)
end = start + self.spec_len
spec = spec[:, start:end]
c = c[:, start:end]
audio_norm = audio_norm[:, start*self.hop_length:end*self.hop_length]
'''
if self.use_spk:
return c, spec, audio_norm, spk
else:
return c, spec, audio_norm
def __getitem__(self, index):
return self.get_audio(self.audiopaths[index][0])
def __len__(self):
return len(self.audiopaths)
class TextAudioSpeakerCollate():
""" Zero-pads model inputs and targets
"""
def __init__(self, hps):
self.hps = hps
self.use_sr = hps.train.use_sr
self.use_spk = hps.model.use_spk
def __call__(self, batch):
"""Collate's training batch from normalized text, audio and speaker identities
PARAMS
------
batch: [text_normalized, spec_normalized, wav_normalized, sid]
"""
# Right zero-pad all one-hot text sequences to max input length
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[0].size(1) for x in batch]),
dim=0, descending=True)
max_spec_len = max([x[1].size(1) for x in batch])
max_wav_len = max([x[2].size(1) for x in batch])
spec_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
if self.use_spk:
spks = torch.FloatTensor(len(batch), batch[0][3].size(0))
else:
spks = None
c_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
c_padded.zero_()
spec_padded.zero_()
wav_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
c = row[0]
c_padded[i, :, :c.size(1)] = c
spec = row[1]
spec_padded[i, :, :spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wav = row[2]
wav_padded[i, :, :wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
if self.use_spk:
spks[i] = row[3]
spec_seglen = spec_lengths[-1] if spec_lengths[-1] < self.hps.train.max_speclen + 1 else self.hps.train.max_speclen + 1
wav_seglen = spec_seglen * self.hps.data.hop_length
spec_padded, ids_slice = commons.rand_spec_segments(spec_padded, spec_lengths, spec_seglen)
wav_padded = commons.slice_segments(wav_padded, ids_slice * self.hps.data.hop_length, wav_seglen)
c_padded = commons.slice_segments(c_padded, ids_slice, spec_seglen)[:,:,:-1]
spec_padded = spec_padded[:,:,:-1]
wav_padded = wav_padded[:,:,:-self.hps.data.hop_length]
if self.use_spk:
return c_padded, spec_padded, wav_padded, spks
else:
return c_padded, spec_padded, wav_padded
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""
Maintain similar input lengths in a batch.
Length groups are specified by boundaries.
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
It removes samples which are not included in the boundaries.
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
"""
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths = dataset.lengths
self.batch_size = batch_size
self.boundaries = boundaries
self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas
def _create_buckets(self):
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
length = self.lengths[i]
idx_bucket = self._bisect(length)
if idx_bucket != -1:
buckets[idx_bucket].append(i)
for i in range(len(buckets) - 1, 0, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i+1)
num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
num_samples_per_bucket.append(len_bucket + rem)
return buckets, num_samples_per_bucket
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))
batches = []
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
ids_bucket = indices[i]
num_samples_bucket = self.num_samples_per_bucket[i]
# add extra samples to make it evenly divisible
rem = num_samples_bucket - len_bucket
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
# subsample
ids_bucket = ids_bucket[self.rank::self.num_replicas]
# batching
for j in range(len(ids_bucket) // self.batch_size):
batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
batches.append(batch)
if self.shuffle:
batch_ids = torch.randperm(len(batches), generator=g).tolist()
batches = [batches[i] for i in batch_ids]
self.batches = batches
assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)
def _bisect(self, x, lo=0, hi=None):
if hi is None:
hi = len(self.boundaries) - 1
if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
return mid
elif x <= self.boundaries[mid]:
return self._bisect(x, lo, mid)
else:
return self._bisect(x, mid + 1, hi)
else:
return -1
def __len__(self):
return self.num_samples // self.batch_size