forked from piermorel/gramm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstat_boxplot.m
150 lines (112 loc) · 4.78 KB
/
stat_boxplot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
function obj=stat_boxplot(obj,varargin)
%stat_boxplot() Create box and whiskers plots
%
% stat_boxplot() will create box and whisker plots of Y values for
%unique values of X. The box is drawn between the 25 and 75
%percentiles, with a line indicating the median. The wiskers
%extend above and below the box to the most extreme data points that are within
% a distance to the box equal to 1.5 times the interquartile
% range (Tukey boxplot).
% Points outside the whiskers ranges are plotted.
% - 'notch', set to true to display notches at median ± 1.58*IQR/sqrt(N)
% - 'dodge' allows to set the spacing between boxes of
% different colors within an unique value of x.
% - 'width' allows to set the width of the individual boxes.
% See the documentation of stat_summary() for the behavior of
% 'dodge' and 'width'
p=inputParser;
my_addParameter(p,'width',0.6);
my_addParameter(p,'dodge',0.7);
my_addParameter(p,'notch',false);
parse(p,varargin{:});
obj.geom=vertcat(obj.geom,{@(dobj,dd)my_boxplot(dobj,dd,p.Results)});
obj.results.stat_boxplot={};
end
function hndl=my_boxplot(obj,draw_data,params)
x=comb(draw_data.x);
y=comb(draw_data.y);
%NEW: compute unique Xs at the facet level (to avoid problems
%with bar dodging width computation)
%facet_x=comb(draw_data.facet_x);
%uni_x=unique(facet_x);
%NEW DODGING
uni_x=unique(x);
%Here we need to implement a loose 'unique' because of
%potential numerical errors
uni_x(diff(uni_x)<1e-10)=[];
%Initialize arrays
if params.notch
p=zeros(length(uni_x),7);
else
p=zeros(length(uni_x),5);
end
outliersx=[];
outliersy=[];
%Loop over unique X values
for ind_x=1:length(uni_x)
%And here we have a loose selection also because of
%potential numerical errors
ysel=y(abs(x-uni_x(ind_x))<1e-10);
%Quartiles
temp=prctile(ysel,[25 50 75]);
IQR=temp(3)-temp(1);
if params.notch
p(ind_x,:)=[temp(1)-1.5*IQR , temp(1), temp(2)-1.58*IQR/sqrt(length(ysel)) , temp(2) , temp(2)+1.58*IQR/sqrt(length(ysel)) , temp(3) , temp(3)+1.5*IQR];
else
%Outlier limits at 1.5 Inter Quartile Range
p(ind_x,:)=[temp(1)-1.5*IQR , temp , temp(3)+1.5*IQR];
end
%Outliers
sel_outlier=ysel<p(ind_x,1) | ysel>p(ind_x,end);
if sum(sel_outlier)>0
outliersy=[outliersy ysel(sel_outlier)'];
outliersx=[outliersx repmat(ind_x,1,sum(sel_outlier))];
end
%Whiskers are at the lowest and highest data points that
%are not outliers (within the +/- 1.5 IQR range)
sel_non_outlier=~sel_outlier;
if sum(sel_non_outlier)>0
p(ind_x,1)=min(ysel(sel_non_outlier));
p(ind_x,end)=max(ysel(sel_non_outlier));
end
end
obj.results.stat_boxplot{obj.result_ind,1}.boxplot_data=p;
if params.dodge>0
boxw=draw_data.dodge_avl_w*params.width./(draw_data.n_colors);
else
boxw=draw_data.dodge_avl_w*params.width;
end
boxmid=dodger(uni_x,draw_data,params.dodge);
boxleft=boxmid-0.5*boxw;
boxright=boxmid+0.5*boxw;
notchleft=boxmid-0.25*boxw;
notchright=boxmid+0.25*boxw;
if params.notch
xpatch=[boxleft' ; boxright' ; boxright' ; notchright'; boxright' ; boxright' ; boxleft' ; boxleft' ; notchleft' ; boxleft'];
ypatch=[p(:,2)' ; p(:,2)' ; p(:,3)' ; p(:,4)' ; p(:,5)' ; p(:,6)' ; p(:,6)' ; p(:,5)' ; p(:,4)' ; p(:,3)'];
else
xpatch=[boxleft' ; boxright' ; boxright' ; boxleft'];
ypatch=[p(:,2)' ; p(:,2)' ; p(:,4)' ; p(:,4)'];
end
%Draw boxes
hndl=patch(xpatch,...
ypatch,...
[1 1 1],'FaceColor',draw_data.color,'EdgeColor','k','FaceAlpha',1,'EdgeAlpha',1);
obj.results.stat_boxplot{obj.result_ind,1}.box_handle=hndl;
%Draw medians
if params.notch
obj.results.stat_boxplot{obj.result_ind,1}.median_handle=line([notchleft' ; notchright'],[p(:,4)' ; p(:,4)'],'Color','k');
else
obj.results.stat_boxplot{obj.result_ind,1}.median_handle=line([boxleft' ; boxright'],[p(:,3)' ; p(:,3)'],'Color','k');
end
%Draw whiskers
obj.results.stat_boxplot{obj.result_ind,1}.lower_whisker_handle=line([boxmid' ; boxmid'],[p(:,1)' ; p(:,2)'],'Color','k');
obj.results.stat_boxplot{obj.result_ind,1}.upper_whisker_handle=line([boxmid' ; boxmid'],[p(:,end-1)' ; p(:,end)'],'Color','k');
%Draw outliers
obj.results.stat_boxplot{obj.result_ind,1}.outliers_handle=plot(boxmid(outliersx),outliersy,'o','MarkerEdgeColor','none','MarkerFaceColor',draw_data.color);
%Adjust limits
obj.plot_lim.maxx(obj.current_row,obj.current_column)=max(max(boxright),obj.plot_lim.maxx(obj.current_row,obj.current_column));
obj.plot_lim.minx(obj.current_row,obj.current_column)=min(min(boxleft),obj.plot_lim.minx(obj.current_row,obj.current_column));
obj.plot_lim.maxy(obj.current_row,obj.current_column)=max(max(p(:,end)),obj.plot_lim.maxy(obj.current_row,obj.current_column));
obj.plot_lim.miny(obj.current_row,obj.current_column)=min(min(p(:,1)),obj.plot_lim.miny(obj.current_row,obj.current_column));
end