forked from LingDong-/linedraw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linedraw.py
261 lines (216 loc) · 8 KB
/
linedraw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from random import *
import math
import argparse
from PIL import Image, ImageDraw, ImageOps
from filters import *
from strokesort import *
import perlin
from util import *
no_cv = False
export_path = "output/out.svg"
draw_contours = True
draw_hatch = True
show_bitmap = False
resolution = 1024
hatch_size = 16
contour_simplify = 2
try:
import numpy as np
import cv2
except:
print("Cannot import numpy/openCV. Switching to NO_CV mode.")
no_cv = True
def find_edges(IM):
print("finding edges...")
if no_cv:
#appmask(IM,[F_Blur])
appmask(IM,[F_SobelX,F_SobelY])
else:
im = np.array(IM)
im = cv2.GaussianBlur(im,(3,3),0)
im = cv2.Canny(im,100,200)
IM = Image.fromarray(im)
return IM.point(lambda p: p > 128 and 255)
def getdots(IM):
print("getting contour points...")
PX = IM.load()
dots = []
w,h = IM.size
for y in range(h-1):
row = []
for x in range(1,w):
if PX[x,y] == 255:
if len(row) > 0:
if x-row[-1][0] == row[-1][-1]+1:
row[-1] = (row[-1][0],row[-1][-1]+1)
else:
row.append((x,0))
else:
row.append((x,0))
dots.append(row)
return dots
def connectdots(dots):
print("connecting contour points...")
contours = []
for y in range(len(dots)):
for x,v in dots[y]:
if v > -1:
if y == 0:
contours.append([(x,y)])
else:
closest = -1
cdist = 100
for x0,v0 in dots[y-1]:
if abs(x0-x) < cdist:
cdist = abs(x0-x)
closest = x0
if cdist > 3:
contours.append([(x,y)])
else:
found = 0
for i in range(len(contours)):
if contours[i][-1] == (closest,y-1):
contours[i].append((x,y,))
found = 1
break
if found == 0:
contours.append([(x,y)])
for c in contours:
if c[-1][1] < y-1 and len(c)<4:
contours.remove(c)
return contours
def getcontours(IM,sc=2):
print("generating contours...")
IM = find_edges(IM)
IM1 = IM.copy()
IM2 = IM.rotate(-90,expand=True).transpose(Image.FLIP_LEFT_RIGHT)
dots1 = getdots(IM1)
contours1 = connectdots(dots1)
dots2 = getdots(IM2)
contours2 = connectdots(dots2)
for i in range(len(contours2)):
contours2[i] = [(c[1],c[0]) for c in contours2[i]]
contours = contours1+contours2
for i in range(len(contours)):
for j in range(len(contours)):
if len(contours[i]) > 0 and len(contours[j])>0:
if distsum(contours[j][0],contours[i][-1]) < 8:
contours[i] = contours[i]+contours[j]
contours[j] = []
for i in range(len(contours)):
contours[i] = [contours[i][j] for j in range(0,len(contours[i]),8)]
contours = [c for c in contours if len(c) > 1]
for i in range(0,len(contours)):
contours[i] = [(v[0]*sc,v[1]*sc) for v in contours[i]]
for i in range(0,len(contours)):
for j in range(0,len(contours[i])):
contours[i][j] = int(contours[i][j][0]+10*perlin.noise(i*0.5,j*0.1,1)),int(contours[i][j][1]+10*perlin.noise(i*0.5,j*0.1,2))
return contours
def hatch(IM,sc=16):
print("hatching...")
PX = IM.load()
w,h = IM.size
lg1 = []
lg2 = []
for x0 in range(w):
for y0 in range(h):
x = x0*sc
y = y0*sc
if PX[x0,y0] > 144:
pass
elif PX[x0,y0] > 64:
lg1.append([(x,y+sc/4),(x+sc,y+sc/4)])
elif PX[x0,y0] > 16:
lg1.append([(x,y+sc/4),(x+sc,y+sc/4)])
lg2.append([(x+sc,y),(x,y+sc)])
else:
lg1.append([(x,y+sc/4),(x+sc,y+sc/4)])
lg1.append([(x,y+sc/2+sc/4),(x+sc,y+sc/2+sc/4)])
lg2.append([(x+sc,y),(x,y+sc)])
lines = [lg1,lg2]
for k in range(0,len(lines)):
for i in range(0,len(lines[k])):
for j in range(0,len(lines[k])):
if lines[k][i] != [] and lines[k][j] != []:
if lines[k][i][-1] == lines[k][j][0]:
lines[k][i] = lines[k][i]+lines[k][j][1:]
lines[k][j] = []
lines[k] = [l for l in lines[k] if len(l) > 0]
lines = lines[0]+lines[1]
for i in range(0,len(lines)):
for j in range(0,len(lines[i])):
lines[i][j] = int(lines[i][j][0]+sc*perlin.noise(i*0.5,j*0.1,1)),int(lines[i][j][1]+sc*perlin.noise(i*0.5,j*0.1,2))-j
return lines
def sketch(path):
IM = None
possible = [path,"images/"+path,"images/"+path+".jpg","images/"+path+".png","images/"+path+".tif"]
for p in possible:
try:
IM = Image.open(p)
break
except:
pass
w,h = IM.size
IM = IM.convert("L")
IM=ImageOps.autocontrast(IM,10)
lines = []
if draw_contours:
lines += getcontours(IM.resize((resolution//contour_simplify,resolution//contour_simplify*h//w)),contour_simplify)
if draw_hatch:
lines += hatch(IM.resize((resolution//hatch_size,resolution//hatch_size*h//w)),hatch_size)
lines = sortlines(lines)
if show_bitmap:
disp = Image.new("RGB",(resolution,resolution*h//w),(255,255,255))
draw = ImageDraw.Draw(disp)
for l in lines:
draw.line(l,(0,0,0),5)
disp.show()
f = open(export_path,'w')
f.write(makesvg(lines))
f.close()
print(len(lines),"strokes.")
print("done.")
return lines
def makesvg(lines):
print("generating svg file...")
out = '<svg xmlns="http://www.w3.org/2000/svg" version="1.1">'
for l in lines:
l = ",".join([str(p[0]*0.5)+","+str(p[1]*0.5) for p in l])
out += '<polyline points="'+l+'" stroke="black" stroke-width="2" fill="none" />\n'
out += '</svg>'
return out
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Convert image to vectorized line drawing for plotters.')
parser.add_argument('-i','--input',dest='input_path',
default='lenna',action='store',nargs='?',type=str,
help='Input path')
parser.add_argument('-o','--output',dest='output_path',
default=export_path,action='store',nargs='?',type=str,
help='Output path.')
parser.add_argument('-b','--show_bitmap',dest='show_bitmap',
const = not show_bitmap,default= show_bitmap,action='store_const',
help="Display bitmap preview.")
parser.add_argument('-nc','--no_contour',dest='no_contour',
const = draw_contours,default= not draw_contours,action='store_const',
help="Don't draw contours.")
parser.add_argument('-nh','--no_hatch',dest='no_hatch',
const = draw_hatch,default= not draw_hatch,action='store_const',
help='Disable hatching.')
parser.add_argument('--no_cv',dest='no_cv',
const = not no_cv,default= no_cv,action='store_const',
help="Don't use openCV.")
parser.add_argument('--hatch_size',dest='hatch_size',
default=hatch_size,action='store',nargs='?',type=int,
help='Patch size of hatches. eg. 8, 16, 32')
parser.add_argument('--contour_simplify',dest='contour_simplify',
default=contour_simplify,action='store',nargs='?',type=int,
help='Level of contour simplification. eg. 1, 2, 3')
args = parser.parse_args()
export_path = args.output_path
draw_hatch = not args.no_hatch
draw_contours = not args.no_contour
hatch_size = args.hatch_size
contour_simplify = args.contour_simplify
show_bitmap = args.show_bitmap
no_cv = args.no_cv
sketch(args.input_path)