-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathmodel.py
397 lines (318 loc) · 14.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
from functools import partial
from typing import Optional, Tuple, Union
import jittor as jt
import jittor.nn as nn
from jittor import Module
from .utils import NewGELUActivation
from .utils import (fixed_pos_embedding, apply_rotary_pos_emb, _init_weights,
get_head_mask)
class MossAttention(Module):
def __init__(self, config):
super(MossAttention, self).__init__()
max_positions = config.n_positions
self.register_buffer(
"causal_mask",
jt.tril(jt.ones((max_positions, max_positions), dtype=jt.bool)).view(
1, 1, max_positions, max_positions
),
)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.embed_dim = config.n_embd
self.num_attention_heads = config.n_head
self.head_dim = self.embed_dim // self.num_attention_heads
if self.head_dim * self.num_attention_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
f" `num_attention_heads`: {self.num_attention_heads})."
)
self.scale_attn = jt.sqrt(jt.float32(self.head_dim))
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
jt.float16
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.rotary_dim = None
if config.rotary_dim is not None:
self.rotary_dim = config.rotary_dim
def _split_heads(self, x, n_head, dim_head, mp_num):
reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
return reshaped
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into n_ctx
"""
if len(tensor.shape) == 5:
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
elif len(tensor.shape) == 4:
tensor = tensor.permute(0, 2, 1, 3).contiguous()
else:
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
return tensor.view(new_shape)
def _attn(
self,
query,
key,
value,
attention_mask=None,
head_mask=None,
):
# compute causal mask from causal mask buffer
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length]
# Keep the attention weights computation in fp32 to avoid overflow issues
query = query.to('float32')
key = key.to('float32')
attn_weights = jt.matmul(query, key.transpose(-1, -2))
attn_weights = attn_weights / self.scale_attn
mask_value = -3.4e38 # torch.finfo(attn_weights.dtype).min)
mask_value = jt.Var(mask_value).type_as(attn_weights)
attn_weights = jt.where(causal_mask, attn_weights, mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.Softmax(dim=-1)(attn_weights)
attn_weights = attn_weights.to(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = jt.matmul(attn_weights, value.float())
if jt.flags.amp_level >= 1:
attn_output = attn_output.half()
return attn_output, attn_weights
def execute(
self,
hidden_states: Optional[jt.Var],
attention_mask: Optional[jt.Var] = None,
layer_past: Optional[Tuple[jt.Var]] = None,
head_mask: Optional[jt.Var] = None,
use_cache: Optional[bool] = False,
) -> Union[
Tuple[jt.Var, Tuple[jt.Var]],
Optional[Tuple[jt.Var, Tuple[jt.Var], Tuple[jt.Var, ...]]],
]:
qkv = self.qkv_proj(hidden_states)
mp_num = 4
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
local_dim = self.head_dim * self.num_attention_heads // mp_num
query, value, key = jt.split(qkv_split, local_dim, dim=-1)
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
value = value.permute(0, 2, 1, 3)
seq_len = key.shape[1]
offset = 0
if layer_past is not None:
offset = layer_past[0].shape[-2]
seq_len += offset
if self.rotary_dim is not None:
k_rot = key[:, :, :, : self.rotary_dim]
k_pass = key[:, :, :, self.rotary_dim :]
q_rot = query[:, :, :, : self.rotary_dim]
q_pass = query[:, :, :, self.rotary_dim :]
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)
key = jt.cat([k_rot, k_pass], dim=-1)
query = jt.cat([q_rot, q_pass], dim=-1)
else:
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
key = apply_rotary_pos_emb(key, sincos, offset=offset)
query = apply_rotary_pos_emb(query, sincos, offset=offset)
key = key.permute(0, 2, 1, 3)
query = query.permute(0, 2, 1, 3)
if layer_past is not None:
past_key = layer_past[0]
past_value = layer_past[1]
key = jt.cat((past_key, key), dim=-2)
value = jt.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
# compute self-attention: V x Softmax(QK^T)
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
return outputs # a, present
class MossMLP(Module):
def __init__(self, intermediate_size, config):
# in MLP: intermediate_size= 4 * embed_dim
super(MossMLP, self).__init__()
embed_dim = config.n_embd
self.fc_in = nn.Linear(embed_dim, intermediate_size)
self.fc_out = nn.Linear(intermediate_size, embed_dim)
self.act = NewGELUActivation()
self.dropout = nn.Dropout(config.resid_pdrop)
def execute(self, hidden_states: Optional[jt.Var]) -> jt.Var:
hidden_states = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc_out(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class MossBlock(Module):
def __init__(self, config):
super(MossBlock, self).__init__()
self.config = config
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = MossAttention(config)
self.mlp = MossMLP(inner_dim, config)
def execute(
self,
hidden_states: Optional[jt.Var],
layer_past: Optional[Tuple[jt.Var]] = None,
attention_mask: Optional[jt.Var] = None,
head_mask: Optional[jt.Var] = None,
use_cache: Optional[bool] = False,
) -> Union[Tuple[jt.Var], Optional[Tuple[jt.Var, Tuple[jt.Var, ...]]]]:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache
)
attn_output = attn_outputs[0] # output_attn: a, present
outputs = attn_outputs[1:]
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = attn_output + feed_forward_hidden_states + residual
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present
class MossModel(Module):
def __init__(self, config):
super(MossModel, self).__init__()
self.config = config
self.embed_dim = config.n_embd
self.vocab_size = config.vocab_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList([MossBlock(config) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.n_head)
self.gradient_checkpointing = False
self.apply(partial(_init_weights, config))
def execute(
self,
input_ids: Optional[jt.Var] = None,
past_key_values: Optional[Tuple[Tuple[jt.Var]]] = None,
attention_mask: Optional[jt.Var] = None,
token_type_ids: Optional[jt.Var] = None,
position_ids: Optional[jt.Var] = None,
head_mask: Optional[jt.Var] = None,
inputs_embeds: Optional[jt.Var] = None,
use_cache: Optional[bool] = None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = jt.arange(past_length, input_shape[-1] + past_length, dtype='int64')
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# [batch_size, 1, 1, to_seq_length]
attention_mask = attention_mask[:, None, None, :]
if jt.flags.amp_level >= 3:
attention_mask = attention_mask.half() # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -65504.0
else:
# finfo.min
attention_mask = (1.0 - attention_mask) * -3.402e38
# n_layer x batch x num_attention_heads x N x N
head_mask = get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
hidden_states = inputs_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
presents = () if use_cache else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
use_cache=use_cache,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
return hidden_states, presents
class MossForCausalLM(Module):
def __init__(self, config):
super(MossForCausalLM, self).__init__()
self.config = config
self.transformer = MossModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
# Initialize weights and apply final processing
self.apply(partial(_init_weights, config))
def execute(
self,
input_ids: Optional[jt.Var] = None,
past_key_values: Optional[Tuple[Tuple[jt.Var]]] = None,
attention_mask: Optional[jt.Var] = None,
token_type_ids: Optional[jt.Var] = None,
position_ids: Optional[jt.Var] = None,
head_mask: Optional[jt.Var] = None,
inputs_embeds: Optional[jt.Var] = None,
labels: Optional[jt.Var] = None,
use_cache: Optional[bool] = None,
):
hidden_states, presents = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
)
lm_logits = self.lm_head(hidden_states).to('float32')
loss = None
if labels is not None:
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
loss = loss.to(hidden_states.dtype)
return dict(
loss=loss,
logits=lm_logits,
past_key_values=presents
)