forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
916 lines (747 loc) · 30.9 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
"""Base classes for all estimators."""
# Author: Gael Varoquaux <[email protected]>
# License: BSD 3 clause
import copy
import warnings
from collections import defaultdict
import platform
import inspect
import re
import numpy as np
from . import __version__
from ._config import get_config
from .utils import _IS_32BIT
from .utils._tags import (
_DEFAULT_TAGS,
_safe_tags,
)
from .utils.validation import check_X_y
from .utils.validation import check_array
from .utils.validation import _check_y
from .utils.validation import _num_features
from .utils._estimator_html_repr import estimator_html_repr
def clone(estimator, *, safe=True):
"""Constructs a new unfitted estimator with the same parameters.
Clone does a deep copy of the model in an estimator
without actually copying attached data. It yields a new estimator
with the same parameters that has not been fitted on any data.
If the estimator's `random_state` parameter is an integer (or if the
estimator doesn't have a `random_state` parameter), an *exact clone* is
returned: the clone and the original estimator will give the exact same
results. Otherwise, *statistical clone* is returned: the clone might
yield different results from the original estimator. More details can be
found in :ref:`randomness`.
Parameters
----------
estimator : {list, tuple, set} of estimator instance or a single \
estimator instance
The estimator or group of estimators to be cloned.
safe : bool, default=True
If safe is False, clone will fall back to a deep copy on objects
that are not estimators.
"""
estimator_type = type(estimator)
# XXX: not handling dictionaries
if estimator_type in (list, tuple, set, frozenset):
return estimator_type([clone(e, safe=safe) for e in estimator])
elif not hasattr(estimator, "get_params") or isinstance(estimator, type):
if not safe:
return copy.deepcopy(estimator)
else:
if isinstance(estimator, type):
raise TypeError(
"Cannot clone object. "
+ "You should provide an instance of "
+ "scikit-learn estimator instead of a class."
)
else:
raise TypeError(
"Cannot clone object '%s' (type %s): "
"it does not seem to be a scikit-learn "
"estimator as it does not implement a "
"'get_params' method." % (repr(estimator), type(estimator))
)
klass = estimator.__class__
new_object_params = estimator.get_params(deep=False)
for name, param in new_object_params.items():
new_object_params[name] = clone(param, safe=False)
new_object = klass(**new_object_params)
params_set = new_object.get_params(deep=False)
# quick sanity check of the parameters of the clone
for name in new_object_params:
param1 = new_object_params[name]
param2 = params_set[name]
if param1 is not param2:
raise RuntimeError(
"Cannot clone object %s, as the constructor "
"either does not set or modifies parameter %s" % (estimator, name)
)
return new_object
def _pprint(params, offset=0, printer=repr):
"""Pretty print the dictionary 'params'
Parameters
----------
params : dict
The dictionary to pretty print
offset : int, default=0
The offset in characters to add at the begin of each line.
printer : callable, default=repr
The function to convert entries to strings, typically
the builtin str or repr
"""
# Do a multi-line justified repr:
options = np.get_printoptions()
np.set_printoptions(precision=5, threshold=64, edgeitems=2)
params_list = list()
this_line_length = offset
line_sep = ",\n" + (1 + offset // 2) * " "
for i, (k, v) in enumerate(sorted(params.items())):
if type(v) is float:
# use str for representing floating point numbers
# this way we get consistent representation across
# architectures and versions.
this_repr = "%s=%s" % (k, str(v))
else:
# use repr of the rest
this_repr = "%s=%s" % (k, printer(v))
if len(this_repr) > 500:
this_repr = this_repr[:300] + "..." + this_repr[-100:]
if i > 0:
if this_line_length + len(this_repr) >= 75 or "\n" in this_repr:
params_list.append(line_sep)
this_line_length = len(line_sep)
else:
params_list.append(", ")
this_line_length += 2
params_list.append(this_repr)
this_line_length += len(this_repr)
np.set_printoptions(**options)
lines = "".join(params_list)
# Strip trailing space to avoid nightmare in doctests
lines = "\n".join(l.rstrip(" ") for l in lines.split("\n"))
return lines
class BaseEstimator:
"""Base class for all estimators in scikit-learn.
Notes
-----
All estimators should specify all the parameters that can be set
at the class level in their ``__init__`` as explicit keyword
arguments (no ``*args`` or ``**kwargs``).
"""
@classmethod
def _get_param_names(cls):
"""Get parameter names for the estimator"""
# fetch the constructor or the original constructor before
# deprecation wrapping if any
init = getattr(cls.__init__, "deprecated_original", cls.__init__)
if init is object.__init__:
# No explicit constructor to introspect
return []
# introspect the constructor arguments to find the model parameters
# to represent
init_signature = inspect.signature(init)
# Consider the constructor parameters excluding 'self'
parameters = [
p
for p in init_signature.parameters.values()
if p.name != "self" and p.kind != p.VAR_KEYWORD
]
for p in parameters:
if p.kind == p.VAR_POSITIONAL:
raise RuntimeError(
"scikit-learn estimators should always "
"specify their parameters in the signature"
" of their __init__ (no varargs)."
" %s with constructor %s doesn't "
" follow this convention." % (cls, init_signature)
)
# Extract and sort argument names excluding 'self'
return sorted([p.name for p in parameters])
def get_params(self, deep=True):
"""
Get parameters for this estimator.
Parameters
----------
deep : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : dict
Parameter names mapped to their values.
"""
out = dict()
for key in self._get_param_names():
value = getattr(self, key)
if deep and hasattr(value, "get_params"):
deep_items = value.get_params().items()
out.update((key + "__" + k, val) for k, val in deep_items)
out[key] = value
return out
def set_params(self, **params):
"""
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as :class:`~sklearn.pipeline.Pipeline`). The latter have
parameters of the form ``<component>__<parameter>`` so that it's
possible to update each component of a nested object.
Parameters
----------
**params : dict
Estimator parameters.
Returns
-------
self : estimator instance
Estimator instance.
"""
if not params:
# Simple optimization to gain speed (inspect is slow)
return self
valid_params = self.get_params(deep=True)
nested_params = defaultdict(dict) # grouped by prefix
for key, value in params.items():
key, delim, sub_key = key.partition("__")
if key not in valid_params:
raise ValueError(
"Invalid parameter %s for estimator %s. "
"Check the list of available parameters "
"with `estimator.get_params().keys()`." % (key, self)
)
if delim:
nested_params[key][sub_key] = value
else:
setattr(self, key, value)
valid_params[key] = value
for key, sub_params in nested_params.items():
valid_params[key].set_params(**sub_params)
return self
def __repr__(self, N_CHAR_MAX=700):
# N_CHAR_MAX is the (approximate) maximum number of non-blank
# characters to render. We pass it as an optional parameter to ease
# the tests.
from .utils._pprint import _EstimatorPrettyPrinter
N_MAX_ELEMENTS_TO_SHOW = 30 # number of elements to show in sequences
# use ellipsis for sequences with a lot of elements
pp = _EstimatorPrettyPrinter(
compact=True,
indent=1,
indent_at_name=True,
n_max_elements_to_show=N_MAX_ELEMENTS_TO_SHOW,
)
repr_ = pp.pformat(self)
# Use bruteforce ellipsis when there are a lot of non-blank characters
n_nonblank = len("".join(repr_.split()))
if n_nonblank > N_CHAR_MAX:
lim = N_CHAR_MAX // 2 # apprx number of chars to keep on both ends
regex = r"^(\s*\S){%d}" % lim
# The regex '^(\s*\S){%d}' % n
# matches from the start of the string until the nth non-blank
# character:
# - ^ matches the start of string
# - (pattern){n} matches n repetitions of pattern
# - \s*\S matches a non-blank char following zero or more blanks
left_lim = re.match(regex, repr_).end()
right_lim = re.match(regex, repr_[::-1]).end()
if "\n" in repr_[left_lim:-right_lim]:
# The left side and right side aren't on the same line.
# To avoid weird cuts, e.g.:
# categoric...ore',
# we need to start the right side with an appropriate newline
# character so that it renders properly as:
# categoric...
# handle_unknown='ignore',
# so we add [^\n]*\n which matches until the next \n
regex += r"[^\n]*\n"
right_lim = re.match(regex, repr_[::-1]).end()
ellipsis = "..."
if left_lim + len(ellipsis) < len(repr_) - right_lim:
# Only add ellipsis if it results in a shorter repr
repr_ = repr_[:left_lim] + "..." + repr_[-right_lim:]
return repr_
def __getstate__(self):
try:
state = super().__getstate__()
except AttributeError:
state = self.__dict__.copy()
if type(self).__module__.startswith("sklearn."):
return dict(state.items(), _sklearn_version=__version__)
else:
return state
def __setstate__(self, state):
if type(self).__module__.startswith("sklearn."):
pickle_version = state.pop("_sklearn_version", "pre-0.18")
if pickle_version != __version__:
warnings.warn(
"Trying to unpickle estimator {0} from version {1} when "
"using version {2}. This might lead to breaking code or "
"invalid results. Use at your own risk.".format(
self.__class__.__name__, pickle_version, __version__
),
UserWarning,
)
try:
super().__setstate__(state)
except AttributeError:
self.__dict__.update(state)
def _more_tags(self):
return _DEFAULT_TAGS
def _get_tags(self):
collected_tags = {}
for base_class in reversed(inspect.getmro(self.__class__)):
if hasattr(base_class, "_more_tags"):
# need the if because mixins might not have _more_tags
# but might do redundant work in estimators
# (i.e. calling more tags on BaseEstimator multiple times)
more_tags = base_class._more_tags(self)
collected_tags.update(more_tags)
return collected_tags
def _check_n_features(self, X, reset):
"""Set the `n_features_in_` attribute, or check against it.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The input samples.
reset : bool
If True, the `n_features_in_` attribute is set to `X.shape[1]`.
If False and the attribute exists, then check that it is equal to
`X.shape[1]`. If False and the attribute does *not* exist, then
the check is skipped.
.. note::
It is recommended to call reset=True in `fit` and in the first
call to `partial_fit`. All other methods that validate `X`
should set `reset=False`.
"""
try:
n_features = _num_features(X)
except TypeError as e:
if not reset and hasattr(self, "n_features_in_"):
raise ValueError(
"X does not contain any features, but "
f"{self.__class__.__name__} is expecting "
f"{self.n_features_in_} features"
) from e
# If the number of features is not defined and reset=True,
# then we skip this check
return
if reset:
self.n_features_in_ = n_features
return
if not hasattr(self, "n_features_in_"):
# Skip this check if the expected number of expected input features
# was not recorded by calling fit first. This is typically the case
# for stateless transformers.
return
if n_features != self.n_features_in_:
raise ValueError(
f"X has {n_features} features, but {self.__class__.__name__} "
f"is expecting {self.n_features_in_} features as input."
)
def _validate_data(
self,
X="no_validation",
y="no_validation",
reset=True,
validate_separately=False,
**check_params,
):
"""Validate input data and set or check the `n_features_in_` attribute.
Parameters
----------
X : {array-like, sparse matrix, dataframe} of shape \
(n_samples, n_features), default='no validation'
The input samples.
If `'no_validation'`, no validation is performed on `X`. This is
useful for meta-estimator which can delegate input validation to
their underlying estimator(s). In that case `y` must be passed and
the only accepted `check_params` are `multi_output` and
`y_numeric`.
y : array-like of shape (n_samples,), default='no_validation'
The targets.
- If `None`, `check_array` is called on `X`. If the estimator's
requires_y tag is True, then an error will be raised.
- If `'no_validation'`, `check_array` is called on `X` and the
estimator's requires_y tag is ignored. This is a default
placeholder and is never meant to be explicitly set. In that case
`X` must be passed.
- Otherwise, only `y` with `_check_y` or both `X` and `y` are
checked with either `check_array` or `check_X_y` depending on
`validate_separately`.
reset : bool, default=True
Whether to reset the `n_features_in_` attribute.
If False, the input will be checked for consistency with data
provided when reset was last True.
.. note::
It is recommended to call reset=True in `fit` and in the first
call to `partial_fit`. All other methods that validate `X`
should set `reset=False`.
validate_separately : False or tuple of dicts, default=False
Only used if y is not None.
If False, call validate_X_y(). Else, it must be a tuple of kwargs
to be used for calling check_array() on X and y respectively.
**check_params : kwargs
Parameters passed to :func:`sklearn.utils.check_array` or
:func:`sklearn.utils.check_X_y`. Ignored if validate_separately
is not False.
Returns
-------
out : {ndarray, sparse matrix} or tuple of these
The validated input. A tuple is returned if both `X` and `y` are
validated.
"""
if y is None and self._get_tags()["requires_y"]:
raise ValueError(
f"This {self.__class__.__name__} estimator "
"requires y to be passed, but the target y is None."
)
no_val_X = isinstance(X, str) and X == "no_validation"
no_val_y = y is None or isinstance(y, str) and y == "no_validation"
if no_val_X and no_val_y:
raise ValueError("Validation should be done on X, y or both.")
elif not no_val_X and no_val_y:
X = check_array(X, **check_params)
out = X
elif no_val_X and not no_val_y:
y = _check_y(y, **check_params)
out = y
else:
if validate_separately:
# We need this because some estimators validate X and y
# separately, and in general, separately calling check_array()
# on X and y isn't equivalent to just calling check_X_y()
# :(
check_X_params, check_y_params = validate_separately
X = check_array(X, **check_X_params)
y = check_array(y, **check_y_params)
else:
X, y = check_X_y(X, y, **check_params)
out = X, y
if not no_val_X and check_params.get("ensure_2d", True):
self._check_n_features(X, reset=reset)
return out
@property
def _repr_html_(self):
"""HTML representation of estimator.
This is redundant with the logic of `_repr_mimebundle_`. The latter
should be favorted in the long term, `_repr_html_` is only
implemented for consumers who do not interpret `_repr_mimbundle_`.
"""
if get_config()["display"] != "diagram":
raise AttributeError(
"_repr_html_ is only defined when the "
"'display' configuration option is set to "
"'diagram'"
)
return self._repr_html_inner
def _repr_html_inner(self):
"""This function is returned by the @property `_repr_html_` to make
`hasattr(estimator, "_repr_html_") return `True` or `False` depending
on `get_config()["display"]`.
"""
return estimator_html_repr(self)
def _repr_mimebundle_(self, **kwargs):
"""Mime bundle used by jupyter kernels to display estimator"""
output = {"text/plain": repr(self)}
if get_config()["display"] == "diagram":
output["text/html"] = estimator_html_repr(self)
return output
class ClassifierMixin:
"""Mixin class for all classifiers in scikit-learn."""
_estimator_type = "classifier"
def score(self, X, y, sample_weight=None):
"""
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
True labels for `X`.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
Mean accuracy of ``self.predict(X)`` wrt. `y`.
"""
from .metrics import accuracy_score
return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
def _more_tags(self):
return {"requires_y": True}
class RegressorMixin:
"""Mixin class for all regression estimators in scikit-learn."""
_estimator_type = "regressor"
def score(self, X, y, sample_weight=None):
"""Return the coefficient of determination of the prediction.
The coefficient of determination :math:`R^2` is defined as
:math:`(1 - \\frac{u}{v})`, where :math:`u` is the residual
sum of squares ``((y_true - y_pred)** 2).sum()`` and :math:`v`
is the total sum of squares ``((y_true - y_true.mean()) ** 2).sum()``.
The best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always predicts
the expected value of `y`, disregarding the input features, would get
a :math:`R^2` score of 0.0.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples. For some estimators this may be a precomputed
kernel matrix or a list of generic objects instead with shape
``(n_samples, n_samples_fitted)``, where ``n_samples_fitted``
is the number of samples used in the fitting for the estimator.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
True values for `X`.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
:math:`R^2` of ``self.predict(X)`` wrt. `y`.
Notes
-----
The :math:`R^2` score used when calling ``score`` on a regressor uses
``multioutput='uniform_average'`` from version 0.23 to keep consistent
with default value of :func:`~sklearn.metrics.r2_score`.
This influences the ``score`` method of all the multioutput
regressors (except for
:class:`~sklearn.multioutput.MultiOutputRegressor`).
"""
from .metrics import r2_score
y_pred = self.predict(X)
return r2_score(y, y_pred, sample_weight=sample_weight)
def _more_tags(self):
return {"requires_y": True}
class ClusterMixin:
"""Mixin class for all cluster estimators in scikit-learn."""
_estimator_type = "clusterer"
def fit_predict(self, X, y=None):
"""
Perform clustering on `X` and returns cluster labels.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
labels : ndarray of shape (n_samples,), dtype=np.int64
Cluster labels.
"""
# non-optimized default implementation; override when a better
# method is possible for a given clustering algorithm
self.fit(X)
return self.labels_
def _more_tags(self):
return {"preserves_dtype": []}
class BiclusterMixin:
"""Mixin class for all bicluster estimators in scikit-learn."""
@property
def biclusters_(self):
"""Convenient way to get row and column indicators together.
Returns the ``rows_`` and ``columns_`` members.
"""
return self.rows_, self.columns_
def get_indices(self, i):
"""Row and column indices of the `i`'th bicluster.
Only works if ``rows_`` and ``columns_`` attributes exist.
Parameters
----------
i : int
The index of the cluster.
Returns
-------
row_ind : ndarray, dtype=np.intp
Indices of rows in the dataset that belong to the bicluster.
col_ind : ndarray, dtype=np.intp
Indices of columns in the dataset that belong to the bicluster.
"""
rows = self.rows_[i]
columns = self.columns_[i]
return np.nonzero(rows)[0], np.nonzero(columns)[0]
def get_shape(self, i):
"""Shape of the `i`'th bicluster.
Parameters
----------
i : int
The index of the cluster.
Returns
-------
n_rows : int
Number of rows in the bicluster.
n_cols : int
Number of columns in the bicluster.
"""
indices = self.get_indices(i)
return tuple(len(i) for i in indices)
def get_submatrix(self, i, data):
"""Return the submatrix corresponding to bicluster `i`.
Parameters
----------
i : int
The index of the cluster.
data : array-like of shape (n_samples, n_features)
The data.
Returns
-------
submatrix : ndarray of shape (n_rows, n_cols)
The submatrix corresponding to bicluster `i`.
Notes
-----
Works with sparse matrices. Only works if ``rows_`` and
``columns_`` attributes exist.
"""
from .utils.validation import check_array
data = check_array(data, accept_sparse="csr")
row_ind, col_ind = self.get_indices(i)
return data[row_ind[:, np.newaxis], col_ind]
class TransformerMixin:
"""Mixin class for all transformers in scikit-learn."""
def fit_transform(self, X, y=None, **fit_params):
"""
Fit to data, then transform it.
Fits transformer to `X` and `y` with optional parameters `fit_params`
and returns a transformed version of `X`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input samples.
y : array-like of shape (n_samples,) or (n_samples, n_outputs), \
default=None
Target values (None for unsupervised transformations).
**fit_params : dict
Additional fit parameters.
Returns
-------
X_new : ndarray array of shape (n_samples, n_features_new)
Transformed array.
"""
# non-optimized default implementation; override when a better
# method is possible for a given clustering algorithm
if y is None:
# fit method of arity 1 (unsupervised transformation)
return self.fit(X, **fit_params).transform(X)
else:
# fit method of arity 2 (supervised transformation)
return self.fit(X, y, **fit_params).transform(X)
class DensityMixin:
"""Mixin class for all density estimators in scikit-learn."""
_estimator_type = "DensityEstimator"
def score(self, X, y=None):
"""Return the score of the model on the data `X`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
score : float
"""
pass
class OutlierMixin:
"""Mixin class for all outlier detection estimators in scikit-learn."""
_estimator_type = "outlier_detector"
def fit_predict(self, X, y=None):
"""Perform fit on X and returns labels for X.
Returns -1 for outliers and 1 for inliers.
Parameters
----------
X : {array-like, sparse matrix, dataframe} of shape \
(n_samples, n_features)
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
y : ndarray of shape (n_samples,)
1 for inliers, -1 for outliers.
"""
# override for transductive outlier detectors like LocalOulierFactor
return self.fit(X).predict(X)
class MetaEstimatorMixin:
_required_parameters = ["estimator"]
"""Mixin class for all meta estimators in scikit-learn."""
class MultiOutputMixin:
"""Mixin to mark estimators that support multioutput."""
def _more_tags(self):
return {"multioutput": True}
class _UnstableArchMixin:
"""Mark estimators that are non-determinstic on 32bit or PowerPC"""
def _more_tags(self):
return {
"non_deterministic": (
_IS_32BIT or platform.machine().startswith(("ppc", "powerpc"))
)
}
def is_classifier(estimator):
"""Return True if the given estimator is (probably) a classifier.
Parameters
----------
estimator : object
Estimator object to test.
Returns
-------
out : bool
True if estimator is a classifier and False otherwise.
"""
return getattr(estimator, "_estimator_type", None) == "classifier"
def is_regressor(estimator):
"""Return True if the given estimator is (probably) a regressor.
Parameters
----------
estimator : estimator instance
Estimator object to test.
Returns
-------
out : bool
True if estimator is a regressor and False otherwise.
"""
return getattr(estimator, "_estimator_type", None) == "regressor"
def is_outlier_detector(estimator):
"""Return True if the given estimator is (probably) an outlier detector.
Parameters
----------
estimator : estimator instance
Estimator object to test.
Returns
-------
out : bool
True if estimator is an outlier detector and False otherwise.
"""
return getattr(estimator, "_estimator_type", None) == "outlier_detector"
def _is_pairwise(estimator):
"""Returns True if estimator is pairwise.
- If the `_pairwise` attribute and the tag are present and consistent,
then use the value and not issue a warning.
- If the `_pairwise` attribute and the tag are present and not
consistent, use the `_pairwise` value and issue a deprecation
warning.
- If only the `_pairwise` attribute is present and it is not False,
issue a deprecation warning and use the `_pairwise` value.
Parameters
----------
estimator : object
Estimator object to test.
Returns
-------
out : bool
True if the estimator is pairwise and False otherwise.
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=FutureWarning)
has_pairwise_attribute = hasattr(estimator, "_pairwise")
pairwise_attribute = getattr(estimator, "_pairwise", False)
pairwise_tag = _safe_tags(estimator, key="pairwise")
if has_pairwise_attribute:
if pairwise_attribute != pairwise_tag:
warnings.warn(
"_pairwise was deprecated in 0.24 and will be removed in 1.1 "
"(renaming of 0.26). Set the estimator tags of your estimator "
"instead",
FutureWarning,
)
return pairwise_attribute
# use pairwise tag when the attribute is not present
return pairwise_tag