forked from Vahe1994/AQLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatmul_benchmark_cpu.py
149 lines (129 loc) · 4.78 KB
/
matmul_benchmark_cpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
import argparse
import time
import numba
import numpy as np
import torch
import torch.nn.functional as F
from aqlm.utils import _dequantize_weight, pack_int_data, unpack_int_data
from torch import nn
def benchmark(f, warmup=10, iter=10):
for i in range(warmup + iter):
f()
if i == warmup - 1:
tick = time.perf_counter()
average_latency = (time.perf_counter() - tick) / iter
time.sleep(1.0)
return average_latency
MODELS = {
"Llama 2 7B": [
(4096, 11008), # gate_proj shape
],
"Llama 2 13B": [
(5120, 13824), # gate_proj shape
],
"Llama 2 70B": [
(8192, 28672), # gate_proj shape
],
}
if __name__ == "__main__":
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument(
"--warmup_iters",
type=int,
default=10,
help="Number of warmup iterations.",
)
parser.add_argument(
"--benchmark_iters",
type=int,
default=1000,
help="Number of benchmark iterations.",
)
parser.add_argument(
"--log_error",
action="store_true",
)
parser.add_argument(
"--nbits_per_codebook",
type=int,
default=8,
help="Number of bits per codebook.",
)
parser.add_argument(
"--num_codebooks",
type=int,
default=2,
help="Number of num_codebooks.",
)
parser.add_argument(
"--in_group_size",
type=int,
default=8,
help="Input group size.",
)
parser.add_argument(
"--nthreads",
type=int,
default=1,
help="Num threads.",
)
args = parser.parse_args()
numba.set_num_threads(args.nthreads)
torch.set_num_threads(args.nthreads)
for model, layers in MODELS.items():
dense = 0
quant = 0
for in_features, out_features in layers:
in_group_size, num_codebooks, nbits_per_codebook, num_input_groups = (
args.in_group_size,
args.num_codebooks,
args.nbits_per_codebook,
in_features // args.in_group_size,
)
@numba.njit(parallel=True)
def aqlm_gemv_lut(x, codebooks, codes_alt, scales):
lut = x.reshape(-1, in_group_size) @ codebooks.reshape(-1, in_group_size).T
lut = lut.reshape(-1, num_codebooks, 2**nbits_per_codebook)
output_vec = np.zeros(out_features, dtype=x.dtype)
for j in numba.prange(num_input_groups):
for i in range(out_features):
for c in range(num_codebooks):
output_vec[i] += lut[j, c, codes_alt[j, i, c]]
output_vec *= scales.flatten()
return output_vec
input = torch.randn((1, in_features), dtype=torch.float32) # [..., in_features]
codes = pack_int_data(
torch.randint(
2**args.nbits_per_codebook, (in_features // args.in_group_size, out_features, args.num_codebooks)
), # [num_in_groups, num_out_groups, num_codebooks]
args.nbits_per_codebook,
)
codebooks = torch.randn(
(args.num_codebooks, 2**args.nbits_per_codebook, 1, args.in_group_size), dtype=torch.float32
) # [num_codebooks, codebook_size, out_group_size, in_group_size]
scales = torch.randn((out_features, 1, 1, 1), dtype=torch.float32) # [num_out_groups, 1, 1, 1]
weight = _dequantize_weight(
unpack_int_data(torch.permute(codes, (1, 0, 2)), args.nbits_per_codebook), codebooks, scales
).contiguous()
output_ref = F.linear(input, weight)
output = aqlm_gemv_lut(input.numpy(), codebooks.numpy(), codes.numpy(), scales.numpy())
if args.log_error:
print(
f"Relative error: {(torch.mean(torch.abs(output_ref - output)) / torch.mean(torch.abs(output_ref))).item():.2e}"
)
dense += benchmark(lambda: F.linear(input, weight, out=output_ref), args.warmup_iters, args.benchmark_iters)
input, codebooks, codes, scales = (
input.numpy(),
codebooks.squeeze(-2).numpy(),
codes.view(torch.uint8).numpy(),
scales.numpy(),
)
quant += benchmark(
lambda: aqlm_gemv_lut(input, codebooks, codes, scales), args.warmup_iters, args.benchmark_iters
)
print(f"{model}: Dense forward = {dense * 1e3:.2f} ms")
print(f"{model}: Quant forward = {quant * 1e3:.2f} ms")
print(f"{model}: Speedup relative to dense = {(dense / quant):.3f}")