forked from Vahe1994/AQLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_to_hf.py
134 lines (106 loc) · 4.49 KB
/
convert_to_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import json
import os
import re
import shutil
import torch
from tqdm.auto import trange
from transformers import AutoConfig, PretrainedConfig
def get_int_dtype(nbits: int) -> torch.dtype:
if nbits <= 8:
return torch.int8
if nbits <= 16:
return torch.int16
if nbits <= 32:
return torch.int32
if nbits <= 64:
return torch.int64
raise ValueError(f"No dtype available for {nbits}-bit codebooks")
@torch.inference_mode()
def pack_int_data(data: torch.IntTensor, nbits: int) -> torch.IntTensor:
data[data >= 2 ** (nbits - 1)] -= 2**nbits
return data.to(get_int_dtype(nbits))
def get_num_layers(config) -> int:
match config.model_type:
case "llama" | "mistral" | "mixtral":
return config.num_hidden_layers
case unknown_type:
raise NotImplementedError(f"Can't get number of layers for {unknown_type}")
def get_layers_prefix(config) -> str:
match config.model_type:
case "llama" | "mistral" | "mixtral":
return "model.layers"
case unknown_type:
raise NotImplementedError(f"Can't get layers prefix for {unknown_type}")
def get_converted_state_dict(config, nbits: int, in_path: os.PathLike) -> [dict, list[str]]:
state_dict = {}
linear_weights_not_to_quantize = []
num_layers = get_num_layers(config)
layers_prefix = get_layers_prefix(config)
for i in trange(num_layers):
layer = torch.load(os.path.join(in_path, f"{i}.pth"))
for name, p in layer.named_parameters():
if torch.is_floating_point(p.data):
p.data = p.data.half()
else:
p.data = pack_int_data(p.data, nbits)
if "quantized_weight." not in name:
linear_weights_not_to_quantize.append(f"{layers_prefix}.{i}.{name}")
else:
name = re.sub("quantized_weight.", "", name)
state_dict[f"{layers_prefix}.{i}.{name}"] = p.data
for key, value in torch.load(os.path.join(in_path, "not_quantized_weights.pt")).items():
state_dict[key] = value.half()
linear_weights_not_to_quantize.append(key)
return state_dict, linear_weights_not_to_quantize
def get_metadata(in_path: os.PathLike) -> dict:
quant_args = torch.load(os.path.join(in_path, "args.pt"))
return {
"nbits_per_codebook": quant_args["nbits_per_codebook"],
"num_codebooks": quant_args["num_codebooks"],
"out_group_size": quant_args["out_group_size"],
"in_group_size": quant_args["in_group_size"],
}
def update_config(config_dict: dict, aqlm_metadata: dict[str, int], linear_weights_not_to_quantize: list[str]):
config_dict["quantization_config"] = {
"quant_method": "aqlm",
"nbits_per_codebook": aqlm_metadata["nbits_per_codebook"],
"num_codebooks": aqlm_metadata["num_codebooks"],
"out_group_size": aqlm_metadata["out_group_size"],
"in_group_size": aqlm_metadata["in_group_size"],
"linear_weights_not_to_quantize": linear_weights_not_to_quantize,
}
config_dict["torch_dtype"] = "float16"
return config_dict
def add_inference_code(model_type: str, save_path: os.PathLike):
if os.path.isdir(f"./transformers/{model_type}"):
shutil.copytree(f"./transformers/{model_type}", save_path, dirs_exist_ok=True)
else:
print(f"No predefined PreTrainedModel exists for {model_type}. You'll have to copy-paste some code yourself.")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument(
"model",
type=str,
help="Path to the model to base config on, as in AutoConfig.from_pretrained()",
)
parser.add_argument(
"in_path",
type=str,
help="Path of the checkpoint to convert",
)
parser.add_argument(
"out_path",
type=str,
help="Path to save HF compatible checkpoint to",
)
args = parser.parse_args()
old_config = AutoConfig.from_pretrained(args.model)
metadata = get_metadata(args.in_path)
state_dict, linear_weights_not_to_quantize = get_converted_state_dict(
old_config, metadata["nbits_per_codebook"], args.in_path
)
torch.save(state_dict, os.path.join(args.out_path, "pytorch_model.bin"))
new_config_dict = update_config(old_config.to_diff_dict(), metadata, linear_weights_not_to_quantize)
with open(os.path.join(args.out_path, "config.json"), "w") as config_file:
json.dump(new_config_dict, config_file, indent=4)