-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
executable file
·226 lines (197 loc) · 7.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import subprocess
import sys
import tempfile
import time
import numpy as np
import torch
import torch.optim as optim
from tensorboardX import SummaryWriter
from terminaltables import AsciiTable
from AttModel import AttModel
from bleu import bleu
from data_load import (
get_batch_indices,
load_cn_vocab,
load_en_vocab,
load_test_data,
load_train_data,
)
from hyperparams import Hyperparams as hp
from util import get_logger
# device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Device: {}".format(device))
# log
if not os.path.exists("log"):
os.mkdir("log")
log_path = os.path.join(
"log", "log-" + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + ".txt"
)
logger = get_logger(log_path)
# validation script
def bleu_script(f):
ref_stem = hp.target_test
cmd = "{eval_script} {refs} {hyp}".format(
eval_script=hp.eval_script, refs=ref_stem, hyp=f
)
p = subprocess.Popen(cmd.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
if p.returncode > 0:
sys.stderr.write(err)
sys.exit(1)
bleu = float(out)
return bleu
def train():
paras = [["Parameters", "Value"]]
for key, value in hp.__dict__.items():
if "__" not in key:
paras.append([str(key), str(value)])
paras_table = AsciiTable(paras)
logger.info("\n" + str(paras_table.table))
score_list = [
[
"epoch_multi_bleu",
"epoch_bleu_1_gram",
"epoch_bleu_2_gram",
"epoch_bleu_3_gram",
"epoch_bleu_4_gram",
"epoch",
]
]
global_batches = 0
cn2idx, idx2cn = load_cn_vocab()
en2idx, idx2en = load_en_vocab()
enc_voc = len(cn2idx)
dec_voc = len(en2idx)
writer = SummaryWriter()
# Load data
X, Y = load_train_data()
# calc total batch count
num_batch = len(X) // hp.batch_size
model = AttModel(hp, enc_voc, dec_voc)
model.train()
model.to(device)
torch.backends.cudnn.benchmark = True # may speed up Forward propagation
if not os.path.exists(hp.model_dir):
os.makedirs(hp.model_dir)
optimizer = optim.Adam(model.parameters(), lr=hp.lr)
for epoch in range(1, hp.num_epochs + 1):
current_batches = 0
for index, current_index in get_batch_indices(len(X), hp.batch_size):
x_batch = torch.LongTensor(X[index]).to(device)
y_batch = torch.LongTensor(Y[index]).to(device)
optimizer.zero_grad()
loss, _, acc = model(x_batch, y_batch)
loss.backward()
optimizer.step()
global_batches += 1
current_batches += 1
if current_batches % 1 == 0:
writer.add_scalar(
"./loss",
scalar_value=loss.detach().cpu().numpy(),
global_step=global_batches,
)
writer.add_scalar(
"./acc",
scalar_value=acc.detach().cpu().numpy(),
global_step=global_batches,
)
if (
current_batches % 10 == 0
or current_batches == 0
or current_batches == num_batch
):
logger.info(
"Epoch: {} batch: {}/{}({:.2%}), loss: {:.6}, acc: {:.4}".format(
epoch,
current_batches,
num_batch,
current_batches / num_batch,
loss.data.item(),
acc.data.item(),
)
)
if epoch % hp.check_frequency == 0 or epoch == hp.num_epochs:
checkpoint_path = hp.model_dir + "/model_epoch_%02d" % epoch + ".pth"
torch.save(model.state_dict(), checkpoint_path)
# eval
score_list = evaluate(model, epoch, writer, score_list)
writer.close()
score_table = AsciiTable(score_list)
logger.info("\n" + score_table.table)
def evaluate(model, epoch, writer, score_list):
# Load data
X, Sources, Targets = load_test_data()
cn2idx, idx2cn = load_cn_vocab()
en2idx, idx2en = load_en_vocab()
model.eval()
model.to(device)
# Inference
if not os.path.exists("results"):
os.mkdir("results")
list_of_refs = []
hypotheses = []
assert hp.batch_size_valid <= len(
X
), "test batch size is large than total data length. Check your data or change batch size."
for i in range(len(X) // hp.batch_size_valid):
# Get mini-batches
x = X[i * hp.batch_size_valid : (i + 1) * hp.batch_size_valid]
sources = Sources[i * hp.batch_size_valid : (i + 1) * hp.batch_size_valid]
targets = Targets[i * hp.batch_size_valid : (i + 1) * hp.batch_size_valid]
# Autoregressive inference
x_ = torch.LongTensor(x).to(device)
preds_t = torch.LongTensor(
np.zeros((hp.batch_size_valid, hp.maxlen), np.int32)
).to(device)
preds = preds_t
_, _preds, _ = model(x_, preds)
preds = _preds.data.cpu().numpy()
# prepare data for BLEU score
for source, target, pred in zip(sources, targets, preds):
got = " ".join(idx2en[idx] for idx in pred).split("</S>")[0].strip()
ref = target.split()
hypothesis = got.split()
if len(ref) > 3 and len(hypothesis) > 3:
list_of_refs.append([ref])
hypotheses.append(hypothesis)
ix = np.random.randint(0, hp.batch_size_valid)
sampling_result = []
sampling_result.append(["Key", "Value"])
sampling_result.append(["Source", " ".join(idx2cn[idx] for idx in X[ix]).split("</S>")[0].strip()])
sampling_result.append(["Target", Targets[ix]])
sampling_result.append(["Predict", " ".join(idx2en[idx] for idx in preds[ix]).split("</S>")[0].strip()])
sampling_table = AsciiTable(sampling_result)
logger.info("===========sampling START===========")
logger.info("\n" + str(sampling_table.table))
logger.info("===========sampling DONE===========")
# Calculate BLEU score
hypotheses = [" ".join(x) for x in hypotheses]
p_tmp = tempfile.mktemp()
f_tmp = open(p_tmp, "w")
f_tmp.write("\n".join(hypotheses))
f_tmp.close()
multi_bleu = bleu_script(p_tmp)
bleu_1_gram = bleu(hypotheses, list_of_refs, smoothing=True, n=1)
bleu_2_gram = bleu(hypotheses, list_of_refs, smoothing=True, n=2)
bleu_3_gram = bleu(hypotheses, list_of_refs, smoothing=True, n=3)
bleu_4_gram = bleu(hypotheses, list_of_refs, smoothing=True, n=4)
writer.add_scalar("./bleu_1_gram", bleu_1_gram, epoch)
writer.add_scalar("./bleu_2_gram", bleu_2_gram, epoch)
writer.add_scalar("./bleu_3_gram", bleu_3_gram, epoch)
writer.add_scalar("./bleu_4_gram", bleu_4_gram, epoch)
writer.add_scalar("./multi-bleu", multi_bleu, epoch)
bleu_result = [
["multi-bleu", "bleu_1-gram", "bleu_2-gram", "bleu_3-gram", "bleu_4-gram",],
[multi_bleu, bleu_1_gram, bleu_2_gram, bleu_3_gram, bleu_4_gram,],
]
bleu_table = AsciiTable(bleu_result)
logger.info("BLEU score for Epoch-{}: ".format(epoch) + "\n" + bleu_table.table)
score_list.append(
[multi_bleu, bleu_1_gram, bleu_2_gram, bleu_3_gram, bleu_4_gram, epoch,]
)
return score_list
if __name__ == "__main__":
train()