forked from google/active-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
small_cnn.py
199 lines (171 loc) · 6.33 KB
/
small_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implements Small CNN model in keras using tensorflow backend."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import keras
import keras.backend as K
from keras.layers import Activation
from keras.layers import Conv2D
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers import MaxPooling2D
from keras.models import Sequential
import numpy as np
import tensorflow as tf
class SmallCNN(object):
"""Small convnet that matches sklearn api.
Implements model from
https://github.com/fchollet/keras/blob/master/examples/cifar10_cnn.py
Adapts for inputs of variable size, expects data to be 4d tensor, with
# of obserations as first dimension and other dimensions to correspond to
length width and # of channels in image.
"""
def __init__(self,
random_state=1,
epochs=50,
batch_size=32,
solver='rmsprop',
learning_rate=0.001,
lr_decay=0.):
# params
self.solver = solver
self.epochs = epochs
self.batch_size = batch_size
self.learning_rate = learning_rate
self.lr_decay = lr_decay
# data
self.encode_map = None
self.decode_map = None
self.model = None
self.random_state = random_state
self.n_classes = None
def build_model(self, X):
# assumes that data axis order is same as the backend
input_shape = X.shape[1:]
np.random.seed(self.random_state)
tf.set_random_seed(self.random_state)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=input_shape, name='conv1'))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3), name='conv2'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same', name='conv3'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3), name='conv4'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, name='dense1'))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(self.n_classes, name='dense2'))
model.add(Activation('softmax'))
try:
optimizer = getattr(keras.optimizers, self.solver)
except:
raise NotImplementedError('optimizer not implemented in keras')
# All optimizers with the exception of nadam take decay as named arg
try:
opt = optimizer(lr=self.learning_rate, decay=self.lr_decay)
except:
opt = optimizer(lr=self.learning_rate, schedule_decay=self.lr_decay)
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
# Save initial weights so that model can be retrained with same
# initialization
self.initial_weights = copy.deepcopy(model.get_weights())
self.model = model
def create_y_mat(self, y):
y_encode = self.encode_y(y)
y_encode = np.reshape(y_encode, (len(y_encode), 1))
y_mat = keras.utils.to_categorical(y_encode, self.n_classes)
return y_mat
# Add handling for classes that do not start counting from 0
def encode_y(self, y):
if self.encode_map is None:
self.classes_ = sorted(list(set(y)))
self.n_classes = len(self.classes_)
self.encode_map = dict(zip(self.classes_, range(len(self.classes_))))
self.decode_map = dict(zip(range(len(self.classes_)), self.classes_))
mapper = lambda x: self.encode_map[x]
transformed_y = np.array(map(mapper, y))
return transformed_y
def decode_y(self, y):
mapper = lambda x: self.decode_map[x]
transformed_y = np.array(map(mapper, y))
return transformed_y
def fit(self, X_train, y_train, sample_weight=None):
y_mat = self.create_y_mat(y_train)
if self.model is None:
self.build_model(X_train)
# We don't want incremental fit so reset learning rate and weights
K.set_value(self.model.optimizer.lr, self.learning_rate)
self.model.set_weights(self.initial_weights)
self.model.fit(
X_train,
y_mat,
batch_size=self.batch_size,
epochs=self.epochs,
shuffle=True,
sample_weight=sample_weight,
verbose=0)
def predict(self, X_val):
predicted = self.model.predict(X_val)
return predicted
def score(self, X_val, val_y):
y_mat = self.create_y_mat(val_y)
val_acc = self.model.evaluate(X_val, y_mat)[1]
return val_acc
def decision_function(self, X):
return self.predict(X)
def transform(self, X):
model = self.model
inp = [model.input]
activations = []
# Get activations of the first dense layer.
output = [layer.output for layer in model.layers if
layer.name == 'dense1'][0]
func = K.function(inp + [K.learning_phase()], [output])
for i in range(int(X.shape[0]/self.batch_size) + 1):
minibatch = X[i * self.batch_size
: min(X.shape[0], (i+1) * self.batch_size)]
list_inputs = [minibatch, 0.]
# Learning phase. 0 = Test mode (no dropout or batch normalization)
layer_output = func(list_inputs)[0]
activations.append(layer_output)
output = np.vstack(tuple(activations))
return output
def get_params(self, deep = False):
params = {}
params['solver'] = self.solver
params['epochs'] = self.epochs
params['batch_size'] = self.batch_size
params['learning_rate'] = self.learning_rate
params['weight_decay'] = self.lr_decay
if deep:
return copy.deepcopy(params)
return copy.copy(params)
def set_params(self, **parameters):
for parameter, value in parameters.items():
setattr(self, parameter, value)
return self