-
Notifications
You must be signed in to change notification settings - Fork 139
/
Copy path1. rnn.py
155 lines (108 loc) · 5.7 KB
/
1. rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
from utils import *
import tensorflow as tf
from sklearn.cross_validation import train_test_split
import time ,os
#Preparing dataset
trainset = sklearn.datasets.load_files(container_path = './sentiment_data', encoding = 'UTF-8')
trainset.data, trainset.target = separate_dataset(trainset,1.0)
print (trainset.target_names)
print (len(trainset.data))
print (len(trainset.target))
ONEHOT = np.zeros((len(trainset.data),len(trainset.target_names)))
ONEHOT[np.arange(len(trainset.data)),trainset.target] = 1.0
train_X, test_X, train_Y, test_Y, train_onehot, test_onehot = train_test_split(trainset.data,
trainset.target,
ONEHOT, test_size = 0.2)
concat = ' '.join(trainset.data).split()
vocabulary_size = len(list(set(concat)))
data, count, dictionary, rev_dictionary = build_dataset(concat, vocabulary_size)
print('vocab from size: %d'%(vocabulary_size))
print('Most common words', count[4:10])
print('Sample data', data[:10], [rev_dictionary[i] for i in data[:10]])
GO = dictionary['GO']
PAD = dictionary['PAD']
EOS = dictionary['EOS']
UNK = dictionary['UNK']
# Hyperparameters
size_layer = 128
num_layers = 2
embedded_size = 128
dimension_output = len(trainset.target_names)
learning_rate = 1e-3
maxlen = 50
batch_size = 128
# Defining Basic RNN cell model
class Model:
def __init__(self, size_layer, num_layers, embedded_size,
dict_size, dimension_output, learning_rate):
def cells(reuse=False):
return tf.nn.rnn_cell.BasicRNNCell(size_layer,reuse=reuse)
self.X = tf.placeholder(tf.int32, [None, None])
self.Y = tf.placeholder(tf.float32, [None, dimension_output])
encoder_embeddings = tf.Variable(tf.random_uniform([dict_size, embedded_size], -1, 1))
encoder_embedded = tf.nn.embedding_lookup(encoder_embeddings, self.X)
rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cells() for _ in range(num_layers)])
outputs, _ = tf.nn.dynamic_rnn(rnn_cells, encoder_embedded, dtype = tf.float32)
W = tf.get_variable('w',shape=(size_layer, dimension_output),initializer=tf.orthogonal_initializer())
b = tf.get_variable('b',shape=(dimension_output),initializer=tf.zeros_initializer())
self.logits = tf.matmul(outputs[:, -1], W) + b
self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = self.logits, labels = self.Y))
self.optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(self.cost)
correct_pred = tf.equal(tf.argmax(self.logits, 1), tf.argmax(self.Y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
#Training
tf.reset_default_graph()
sess = tf.InteractiveSession()
model = Model(size_layer,num_layers,embedded_size,vocabulary_size+4,dimension_output,learning_rate)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.global_variables(), max_to_keep=2)
checkpoint_dir = os.path.abspath(os.path.join('./', "checkpoints_basic_rnn"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
EARLY_STOPPING, CURRENT_CHECKPOINT, CURRENT_ACC, EPOCH = 5, 0, 0, 0
while True:
lasttime = time.time()
if CURRENT_CHECKPOINT == EARLY_STOPPING:
print('break epoch:%d\n'%(EPOCH))
break
train_acc, train_loss, test_acc, test_loss = 0, 0, 0, 0
for i in range(0, (len(train_X) // batch_size) * batch_size, batch_size):
batch_x = str_idx(train_X[i:i+batch_size],dictionary,maxlen)
acc, loss, _ = sess.run([model.accuracy, model.cost, model.optimizer],
feed_dict = {model.X : batch_x, model.Y : train_onehot[i:i+batch_size]})
train_loss += loss
train_acc += acc
for i in range(0, (len(test_X) // batch_size) * batch_size, batch_size):
batch_x = str_idx(test_X[i:i+batch_size],dictionary,maxlen)
acc, loss = sess.run([model.accuracy, model.cost],
feed_dict = {model.X : batch_x, model.Y : train_onehot[i:i+batch_size]})
test_loss += loss
test_acc += acc
train_loss /= (len(train_X) // batch_size)
train_acc /= (len(train_X) // batch_size)
test_loss /= (len(test_X) // batch_size)
test_acc /= (len(test_X) // batch_size)
if test_acc > CURRENT_ACC:
print('epoch: %d, pass acc: %f, current acc: %f'%(EPOCH,CURRENT_ACC, test_acc))
CURRENT_ACC = test_acc
CURRENT_CHECKPOINT = 0
else:
CURRENT_CHECKPOINT += 1
print('time taken:', time.time()-lasttime)
print('epoch: %d, training loss: %f, training acc: %f, valid loss: %f, valid acc: %f\n'%(EPOCH,train_loss,
train_acc,test_loss,
test_acc))
path = saver.save(sess, checkpoint_prefix, global_step=EPOCH)
EPOCH += 1
#Evaluation
logits = sess.run(model.logits, feed_dict={model.X:str_idx(test_X,dictionary,maxlen)})
print(metrics.classification_report(test_Y, np.argmax(logits,1), target_names = trainset.target_names))
#Predict
checkpoint_file = tf.train.latest_checkpoint(os.path.join('./', 'checkpoints_basic_rnn'))
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
def predict(sentence):
logits = sess.run(model.logits, feed_dict={model.X:str_idx([sentence],dictionary,maxlen)})
return trainset.target_names[np.argmax(logits,1)[0]]
predict('i love this book')