-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathtest_split.cc
113 lines (103 loc) · 4.46 KB
/
test_split.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/function/split.h"
#include "glog/logging.h"
#include "gtest_utils.h"
#include "gtest/gtest.h"
#include <array>
#include <vector>
namespace fastdeploy {
namespace function {
std::vector<float> CreateTestData() {
// Shape: [2, 3, 4]
std::vector<float> x_data = {
0.8428625, 0.6461913, 0.13740455, 0.11430702, 0.659926, 0.535816,
0.7429162, 0.8456049, 0.21228176, 0.29970083, 0.8621713, 0.40894133,
0.12684688, 0.1566195, 0.42884097, 0.8476526, 0.2458633, 0.669046,
0.87888306, 0.6762589, 0.666453, 0.32523027, 0.4139388, 0.8341406};
return x_data;
}
TEST(fastdeploy, split_axis0) {
CheckShape check_shape;
CheckData check_data;
FDTensor x;
std::vector<FDTensor> out;
auto test_data = CreateTestData();
x.SetExternalData({2, 3, 4}, FDDataType::FP32, test_data.data());
Split(x, {1, 1}, &out, 0);
ASSERT_EQ(out.size(), 2);
check_shape(out[0].Shape(), {1, 3, 4});
check_shape(out[1].Shape(), {1, 3, 4});
std::vector<float> result1 = {0.842862, 0.646191, 0.137405, 0.114307,
0.659926, 0.535816, 0.742916, 0.845605,
0.212282, 0.299701, 0.862171, 0.408941};
std::vector<float> result2 = {0.126847, 0.15662, 0.428841, 0.847653,
0.245863, 0.669046, 0.878883, 0.676259,
0.666453, 0.32523, 0.413939, 0.834141};
check_data(reinterpret_cast<const float*>(out[0].Data()), result1.data(),
result1.size());
check_data(reinterpret_cast<const float*>(out[1].Data()), result2.data(),
result2.size());
}
TEST(fastdeploy, split_axis1) {
CheckShape check_shape;
CheckData check_data;
FDTensor x;
std::vector<FDTensor> out;
auto test_data = CreateTestData();
x.SetExternalData({2, 3, 4}, FDDataType::FP32, test_data.data());
Split(x, {2, 1}, &out, 1);
ASSERT_EQ(out.size(), 2);
check_shape(out[0].Shape(), {2, 2, 4});
check_shape(out[1].Shape(), {2, 1, 4});
std::vector<float> result1 = {0.842862, 0.646191, 0.137405, 0.114307,
0.659926, 0.535816, 0.742916, 0.845605,
0.126847, 0.15662, 0.428841, 0.847653,
0.245863, 0.669046, 0.878883, 0.676259};
std::vector<float> result2 = {0.212282, 0.299701, 0.862171, 0.408941,
0.666453, 0.32523, 0.413939, 0.834141};
check_data(reinterpret_cast<const float*>(out[0].Data()), result1.data(),
result1.size());
check_data(reinterpret_cast<const float*>(out[1].Data()), result2.data(),
result2.size());
}
TEST(fastdeploy, split_axis2) {
CheckShape check_shape;
CheckData check_data;
FDTensor x;
std::vector<FDTensor> out;
auto test_data = CreateTestData();
x.SetExternalData({2, 3, 4}, FDDataType::FP32, test_data.data());
Split(x, {1, 2, 1}, &out, 2);
ASSERT_EQ(out.size(), 3);
check_shape(out[0].Shape(), {2, 3, 1});
check_shape(out[1].Shape(), {2, 3, 2});
check_shape(out[2].Shape(), {2, 3, 1});
std::vector<float> result1 = {0.842862, 0.659926, 0.212282,
0.126847, 0.245863, 0.666453};
std::vector<float> result2 = {0.646191, 0.137405, 0.535816, 0.742916,
0.299701, 0.862171, 0.15662, 0.428841,
0.669046, 0.878883, 0.32523, 0.413939};
std::vector<float> result3 = {0.114307, 0.845605, 0.408941,
0.847653, 0.676259, 0.834141};
check_data(reinterpret_cast<const float*>(out[0].Data()), result1.data(),
result1.size());
check_data(reinterpret_cast<const float*>(out[1].Data()), result2.data(),
result2.size());
check_data(reinterpret_cast<const float*>(out[2].Data()), result3.data(),
result3.size());
}
} // namespace function
} // namespace fastdeploy