-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathtest_centerface.py
99 lines (80 loc) · 3.68 KB
/
test_centerface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fastdeploy import ModelFormat
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
import runtime_config as rc
def test_facedet_centerface():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/CenterFace.onnx"
input_url1 = "https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/centerface_result1.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url1, "resources")
model_file = "resources/CenterFace.onnx"
model = fd.vision.facedet.CenterFace(
model_file, runtime_option=rc.test_option)
with open("resources/centerface_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
# compare diff
im1 = cv2.imread("./resources/test_lite_face_detector_3.jpg")
print(expect1)
for i in range(3):
# test single predict
result1 = model.predict(im1)
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
assert diff_boxes_1.max(
) < 1e-04, "There's difference in detection boxes 1."
assert diff_scores_1.max(
) < 1e-05, "There's difference in detection score 1."
def test_facedet_centerface_runtime():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/CenterFace.onnx"
input_url1 = "https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/centerface_result1.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url1, "resources")
model_file = "resources/CenterFace.onnx"
preprocessor = fd.vision.facedet.CenterFacePreprocessor()
postprocessor = fd.vision.facedet.CenterFacePostprocessor()
rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
rc.test_option.use_openvino_backend()
runtime = fd.Runtime(rc.test_option)
with open("resources/centerface_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
# compare diff
im1 = cv2.imread("./resources/test_lite_face_detector_3.jpg")
for i in range(3):
# test runtime
input_tensors, ims_info = preprocessor.run([im1.copy()])
output_tensors = runtime.infer({"input.1": input_tensors[0]})
results = postprocessor.run(output_tensors, ims_info)
result1 = results[0]
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
assert diff_boxes_1.max(
) < 1e-04, "There's difference in detection boxes 1."
assert diff_scores_1.max(
) < 1e-05, "There's difference in detection score 1."
if __name__ == "__main__":
test_facedet_centerface()
test_facedet_centerface_runtime()