-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathtest_ppocrv3.py
executable file
·256 lines (204 loc) · 9.05 KB
/
test_ppocrv3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import fastdeploy as fd
import cv2
import os
import runtime_config as rc
import numpy as np
import math
import pickle
det_model_url = "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar"
cls_model_url = "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar"
rec_model_url = "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar"
img_url = "https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg"
label_url = "https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt"
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/ocr_result.pickle"
fd.download_and_decompress(det_model_url, "resources")
fd.download_and_decompress(cls_model_url, "resources")
fd.download_and_decompress(rec_model_url, "resources")
fd.download(img_url, "resources")
fd.download(result_url, "resources")
fd.download(label_url, "resources")
def get_rotate_crop_image(img, box):
points = []
for i in range(4):
points.append([box[2 * i], box[2 * i + 1]])
points = np.array(points, dtype=np.float32)
img = img.astype(np.float32)
assert len(points) == 4, "shape of points must be 4*2"
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0], [img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(
img,
M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img
option = fd.RuntimeOption()
# det_model
det_model_path = "resources/ch_PP-OCRv3_det_infer/"
det_model_file = det_model_path + "inference.pdmodel"
det_params_file = det_model_path + "inference.pdiparams"
det_preprocessor = fd.vision.ocr.DBDetectorPreprocessor()
rc.test_option.set_model_path(det_model_file, det_params_file)
det_runtime = fd.Runtime(rc.test_option)
det_postprocessor = fd.vision.ocr.DBDetectorPostprocessor()
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=option)
# cls_model
cls_model_path = "resources/ch_ppocr_mobile_v2.0_cls_infer/"
cls_model_file = cls_model_path + "inference.pdmodel"
cls_params_file = cls_model_path + "inference.pdiparams"
cls_preprocessor = fd.vision.ocr.ClassifierPreprocessor()
rc.test_option.set_model_path(cls_model_file, cls_params_file)
cls_runtime = fd.Runtime(rc.test_option)
cls_postprocessor = fd.vision.ocr.ClassifierPostprocessor()
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=option)
#rec_model
rec_model_path = "resources/ch_PP-OCRv3_rec_infer/"
rec_model_file = rec_model_path + "inference.pdmodel"
rec_params_file = rec_model_path + "inference.pdiparams"
rec_label_file = "resources/ppocr_keys_v1.txt"
rec_preprocessor = fd.vision.ocr.RecognizerPreprocessor()
rc.test_option.set_model_path(rec_model_file, rec_params_file)
rec_runtime = fd.Runtime(rc.test_option)
rec_postprocessor = fd.vision.ocr.RecognizerPostprocessor(rec_label_file)
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=option)
#pp_ocrv3
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
#pp_ocrv3_no_cls
ppocr_v3_no_cls = fd.vision.ocr.PPOCRv3(
det_model=det_model, rec_model=rec_model)
#input image
img_file = "resources/12.jpg"
im = []
im.append(cv2.imread(img_file))
im.append(cv2.imread(img_file))
result_file = "resources/ocr_result.pickle"
with open(result_file, 'rb') as f:
boxes, cls_labels, cls_scores, text, rec_scores = pickle.load(f)
base_boxes = np.array(boxes)
base_cls_labels = np.array(cls_labels)
base_cls_scores = np.array(cls_scores)
base_text = text
base_rec_scores = np.array(rec_scores)
def compare_result(pred_boxes, pred_cls_labels, pred_cls_scores, pred_text,
pred_rec_scores):
pred_boxes = np.array(pred_boxes)
pred_cls_labels = np.array(pred_cls_labels)
pred_cls_scores = np.array(pred_cls_scores)
pred_text = pred_text
pred_rec_scores = np.array(pred_rec_scores)
diff_boxes = np.fabs(base_boxes - pred_boxes).max()
diff_cls_labels = np.fabs(base_cls_labels - pred_cls_labels).max()
diff_cls_scores = np.fabs(base_cls_scores - pred_cls_scores).max()
diff_text = (base_text != pred_text)
diff_rec_scores = np.fabs(base_rec_scores - pred_rec_scores).max()
print('diff:', diff_boxes, diff_cls_labels, diff_cls_scores, diff_text,
diff_rec_scores)
diff_threshold = 1e-01
assert diff_boxes < diff_threshold, "There is diff in boxes"
assert diff_cls_labels < diff_threshold, "There is diff in cls_label"
assert diff_cls_scores < diff_threshold, "There is diff in cls_scores"
assert diff_text < diff_threshold, "There is diff in text"
assert diff_rec_scores < diff_threshold, "There is diff in rec_scores"
def compare_result_no_cls(pred_boxes, pred_text, pred_rec_scores):
pred_boxes = np.array(pred_boxes)
pred_text = pred_text
pred_rec_scores = np.array(pred_rec_scores)
diff_boxes = np.fabs(base_boxes - pred_boxes).max()
diff_text = (base_text != pred_text)
diff_rec_scores = np.fabs(base_rec_scores - pred_rec_scores).max()
print('diff:', diff_boxes, diff_text, diff_rec_scores)
diff_threshold = 1e-01
assert diff_boxes < diff_threshold, "There is diff in boxes"
assert diff_text < diff_threshold, "There is diff in text"
assert diff_rec_scores < diff_threshold, "There is diff in rec_scores"
def test_ppocr_v3():
ppocr_v3.cls_batch_size = -1
ppocr_v3.rec_batch_size = -1
ocr_result = ppocr_v3.predict(im[0])
compare_result(ocr_result.boxes, ocr_result.cls_labels,
ocr_result.cls_scores, ocr_result.text,
ocr_result.rec_scores)
ppocr_v3.cls_batch_size = 2
ppocr_v3.rec_batch_size = 2
ocr_result = ppocr_v3.predict(im[0])
compare_result(ocr_result.boxes, ocr_result.cls_labels,
ocr_result.cls_scores, ocr_result.text,
ocr_result.rec_scores)
def test_ppocr_v3_1():
ppocr_v3_no_cls.cls_batch_size = -1
ppocr_v3_no_cls.rec_batch_size = -1
ocr_result = ppocr_v3_no_cls.predict(im[0])
compare_result_no_cls(ocr_result.boxes, ocr_result.text,
ocr_result.rec_scores)
ppocr_v3_no_cls.cls_batch_size = 2
ppocr_v3_no_cls.rec_batch_size = 2
ocr_result = ppocr_v3_no_cls.predict(im[0])
compare_result_no_cls(ocr_result.boxes, ocr_result.text,
ocr_result.rec_scores)
def test_ppocr_v3_2():
det_input_tensors, batch_det_img_info = det_preprocessor.run(im)
det_output_tensors = det_runtime.infer({"x": det_input_tensors[0]})
det_results = det_postprocessor.run(det_output_tensors, batch_det_img_info)
batch_boxes = []
batch_cls_labels = []
batch_cls_scores = []
batch_rec_texts = []
batch_rec_scores = []
for i_batch in range(len(det_results)):
cls_labels = []
cls_scores = []
rec_texts = []
rec_scores = []
box_list = fd.vision.ocr.sort_boxes(det_results[i_batch])
batch_boxes.append(box_list)
image_list = []
if len(box_list) == 0:
image_list.append(im[i_batch])
else:
for box in box_list:
crop_img = get_rotate_crop_image(im[i_batch], box)
image_list.append(crop_img)
cls_input_tensors = cls_preprocessor.run(image_list)
cls_output_tensors = cls_runtime.infer({"x": cls_input_tensors[0]})
cls_labels, cls_scores = cls_postprocessor.run(cls_output_tensors)
batch_cls_labels.append(cls_labels)
batch_cls_scores.append(cls_scores)
for index in range(len(image_list)):
if cls_labels[index] == 1 and cls_scores[
index] > cls_postprocessor.cls_thresh:
image_list[index] = cv2.rotate(
image_list[index].astype(np.float32), 1)
image_list[index] = np.astype(np.uint8)
rec_input_tensors = rec_preprocessor.run(image_list)
rec_output_tensors = rec_runtime.infer({"x": rec_input_tensors[0]})
rec_texts, rec_scores = rec_postprocessor.run(rec_output_tensors)
batch_rec_texts.append(rec_texts)
batch_rec_scores.append(rec_scores)
compare_result(box_list, cls_labels, cls_scores, rec_texts, rec_scores)
if __name__ == "__main__":
print("test test_ppocr_v3")
test_ppocr_v3()
test_ppocr_v3()
print("test test_ppocr_v3_1")
test_ppocr_v3_1()
test_ppocr_v3_1()
print("test test_ppocr_v3_2")
test_ppocr_v3_2()
test_ppocr_v3_2()