-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathtest_yolov5seg.py
220 lines (184 loc) · 9.37 KB
/
test_yolov5seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fastdeploy import ModelFormat
import fastdeploy as fd
import cv2
import os
import pickle
import numpy as np
import runtime_config as rc
def test_detection_yolov5seg():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result1.pkl"
result_url2 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result2.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(input_url2, "resources")
fd.download(result_url1, "resources")
fd.download(result_url2, "resources")
model_file = "resources/yolov5s-seg.onnx"
rc.test_option.use_ort_backend()
model = fd.vision.detection.YOLOv5Seg(
model_file, runtime_option=rc.test_option)
with open("resources/yolov5seg_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
with open("resources/yolov5seg_result2.pkl", "rb") as f:
expect2 = pickle.load(f)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
im2 = cv2.imread("./resources/000000570688.jpg")
for i in range(3):
# test single predict
result1 = model.predict(im1)
result2 = model.predict(im2)
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_boxes_2 = np.fabs(
np.array(result2.boxes) - np.array(expect2["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_label_2 = np.fabs(
np.array(result2.label_ids) - np.array(expect2["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
diff_scores_2 = np.fabs(
np.array(result2.scores) - np.array(expect2["scores"]))
# for masks
for j in range(np.array(result1.boxes).shape[0]):
result_mask_1 = np.array(result1.masks[j].data).reshape(
result1.masks[j].shape)
diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
str(j)]))
nonzero_nums = np.count_nonzero(diff_mask_1)
nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
diff_mask_1.shape[1])
assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
for k in range(np.array(result2.boxes).shape[0]):
result_mask_2 = np.array(result2.masks[k].data).reshape(
result2.masks[k].shape)
diff_mask_2 = np.fabs(result_mask_2 - np.array(expect2["mask_" +
str(k)]))
nonzero_nums = np.count_nonzero(diff_mask_2)
nonzero_count = nonzero_nums / (diff_mask_2.shape[0] *
diff_mask_2.shape[1])
assert nonzero_count < 1e-02, "The different pixel ratio of mask2 is greater than 1%."
assert diff_boxes_1.max(
) < 1e-01, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-02, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-04, "There's difference in detection score 1."
assert diff_boxes_2.max(
) < 1e-01, "There's difference in detection boxes 2."
assert diff_label_2.max(
) < 1e-02, "There's difference in detection label 2."
assert diff_scores_2.max(
) < 1e-04, "There's difference in detection score 2."
# test batch predict
results = model.batch_predict([im1, im2])
result1 = results[0]
result2 = results[1]
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_boxes_2 = np.fabs(
np.array(result2.boxes) - np.array(expect2["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_label_2 = np.fabs(
np.array(result2.label_ids) - np.array(expect2["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
diff_scores_2 = np.fabs(
np.array(result2.scores) - np.array(expect2["scores"]))
# for masks
for j in range(np.array(result1.boxes).shape[0]):
result_mask_1 = np.array(result1.masks[j].data).reshape(
result1.masks[j].shape)
diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
str(j)]))
nonzero_nums = np.count_nonzero(diff_mask_1)
nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
diff_mask_1.shape[1])
assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
for k in range(np.array(result2.boxes).shape[0]):
result_mask_2 = np.array(result2.masks[k].data).reshape(
result2.masks[k].shape)
diff_mask_2 = np.fabs(result_mask_2 - np.array(expect2["mask_" +
str(k)]))
nonzero_nums = np.count_nonzero(diff_mask_2)
nonzero_count = nonzero_nums / (diff_mask_2.shape[0] *
diff_mask_2.shape[1])
assert nonzero_count < 1e-02, "The different pixel ratio of mask2 is greater than 1%."
assert diff_boxes_1.max(
) < 1e-01, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-02, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-03, "There's difference in detection score 1."
assert diff_boxes_2.max(
) < 1e-01, "There's difference in detection boxes 2."
assert diff_label_2.max(
) < 1e-02, "There's difference in detection label 2."
assert diff_scores_2.max(
) < 1e-04, "There's difference in detection score 2."
def test_detection_yolov5seg_runtime():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result1.pkl"
fd.download(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url1, "resources")
model_file = "resources/yolov5s-seg.onnx"
preprocessor = fd.vision.detection.YOLOv5SegPreprocessor()
postprocessor = fd.vision.detection.YOLOv5SegPostprocessor()
rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX)
rc.test_option.use_ort_backend()
runtime = fd.Runtime(rc.test_option)
with open("resources/yolov5seg_result1.pkl", "rb") as f:
expect1 = pickle.load(f)
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(3):
# test runtime
input_tensors, ims_info = preprocessor.run([im1.copy()])
output_tensors = runtime.infer({"images": input_tensors[0]})
results = postprocessor.run(output_tensors, ims_info)
result1 = results[0]
diff_boxes_1 = np.fabs(
np.array(result1.boxes) - np.array(expect1["boxes"]))
diff_label_1 = np.fabs(
np.array(result1.label_ids) - np.array(expect1["label_ids"]))
diff_scores_1 = np.fabs(
np.array(result1.scores) - np.array(expect1["scores"]))
# for masks
for j in range(np.array(result1.boxes).shape[0]):
result_mask_1 = np.array(result1.masks[j].data).reshape(
result1.masks[j].shape)
diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" +
str(j)]))
nonzero_nums = np.count_nonzero(diff_mask_1)
nonzero_count = nonzero_nums / (diff_mask_1.shape[0] *
diff_mask_1.shape[1])
assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%."
assert diff_boxes_1.max(
) < 1e-01, "There's difference in detection boxes 1."
assert diff_label_1.max(
) < 1e-02, "There's difference in detection label 1."
assert diff_scores_1.max(
) < 1e-04, "There's difference in detection score 1."
if __name__ == "__main__":
test_detection_yolov5seg()
test_detection_yolov5seg_runtime()