-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathcommon_tools.py
executable file
·270 lines (261 loc) · 9.21 KB
/
common_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import argparse
import ast
import uvicorn
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'tools',
choices=['compress', 'convert', 'simple_serving', 'paddle2coreml'])
## argumentments for auto compression
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of compression strategy config.")
parser.add_argument(
'--method',
type=str,
default=None,
help="choose PTQ or QAT as quantization method")
parser.add_argument(
'--save_dir',
type=str,
default='./output',
help="directory to save model.")
parser.add_argument(
'--devices',
type=str,
default='gpu',
help="which device used to compress.")
## arguments for other x2paddle
parser.add_argument(
'--framework',
type=str,
default=None,
help="define which deeplearning framework(tensorflow/caffe/onnx)")
parser.add_argument(
'--model',
type=str,
default=None,
help="define model file path for tensorflow or onnx")
parser.add_argument(
"--prototxt",
"-p",
type=str,
default=None,
help="prototxt file of caffe model")
parser.add_argument(
"--weight",
"-w",
type=str,
default=None,
help="weight file of caffe model")
parser.add_argument(
"--caffe_proto",
"-c",
type=str,
default=None,
help="optional: the .py file compiled by caffe proto file of caffe model"
)
parser.add_argument(
"--input_shape_dict",
"-isd",
type=str,
default=None,
help="define input shapes, e.g --input_shape_dict=\"{'image':[1, 3, 608, 608]}\" or" \
"--input_shape_dict=\"{'image':[1, 3, 608, 608], 'im_shape': [1, 2], 'scale_factor': [1, 2]}\"")
parser.add_argument(
"--enable_code_optim",
"-co",
type=ast.literal_eval,
default=False,
help="Turn on code optimization")
## arguments for simple serving
parser.add_argument(
"--app",
type=str,
default="server:app",
help="Simple serving app string")
parser.add_argument(
"--host",
type=str,
default="127.0.0.1",
help="Simple serving host IP address")
parser.add_argument(
"--port", type=int, default=8000, help="Simple serving host port")
## arguments for paddle2coreml
parser.add_argument(
"--p2c_paddle_model_dir",
type=str,
default=None,
help="define paddle model path")
parser.add_argument(
"--p2c_coreml_model_dir",
type=str,
default=None,
help="define generated coreml model path")
parser.add_argument(
"--p2c_coreml_model_name",
type=str,
default="coreml_model",
help="define generated coreml model name")
parser.add_argument(
"--p2c_input_names", type=str, default=None, help="define input names")
parser.add_argument(
"--p2c_input_dtypes",
type=str,
default="float32",
help="define input dtypes")
parser.add_argument(
"--p2c_input_shapes",
type=str,
default=None,
help="define input shapes")
parser.add_argument(
"--p2c_output_names",
type=str,
default=None,
help="define output names")
## arguments for other tools
return parser
def main():
args = argsparser().parse_args()
if args.tools == "compress":
from .auto_compression.fd_auto_compress.fd_auto_compress import auto_compress
print("Welcome to use FastDeploy Auto Compression Toolkit!")
auto_compress(args)
if args.tools == "convert":
try:
import platform
import logging
v0, v1, v2 = platform.python_version().split('.')
if not (int(v0) >= 3 and int(v1) >= 5):
logging.info("[ERROR] python>=3.5 is required")
return
import paddle
v0, v1, v2 = paddle.__version__.split('.')
logging.info("paddle.__version__ = {}".format(paddle.__version__))
if v0 == '0' and v1 == '0' and v2 == '0':
logging.info(
"[WARNING] You are use develop version of paddlepaddle")
elif int(v0) != 2 or int(v1) < 0:
logging.info("[ERROR] paddlepaddle>=2.0.0 is required")
return
from x2paddle.convert import tf2paddle, caffe2paddle, onnx2paddle
if args.framework == "tensorflow":
assert args.model is not None, "--model should be defined while convert tensorflow model"
tf2paddle(args.model, args.save_dir)
elif args.framework == "caffe":
assert args.prototxt is not None and args.weight is not None, "--prototxt and --weight should be defined while convert caffe model"
caffe2paddle(args.prototxt, args.weight, args.save_dir,
args.caffe_proto)
elif args.framework == "onnx":
assert args.model is not None, "--model should be defined while convert onnx model"
onnx2paddle(
args.model,
args.save_dir,
input_shape_dict=args.input_shape_dict)
else:
raise Exception(
"--framework only support tensorflow/caffe/onnx now")
except ImportError:
print(
"Model convert failed! Please check if you have installed it!")
if args.tools == "simple_serving":
custom_logging_config = {
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
"()": "uvicorn.logging.DefaultFormatter",
"fmt": "%(asctime)s %(levelprefix)s %(message)s",
'datefmt': '%Y-%m-%d %H:%M:%S',
"use_colors": None,
},
},
"handlers": {
"default": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
'null': {
"formatter": "default",
"class": 'logging.NullHandler'
}
},
"loggers": {
"": {
"handlers": ["null"],
"level": "DEBUG"
},
"uvicorn.error": {
"handlers": ["default"],
"level": "DEBUG"
}
},
}
uvicorn.run(args.app,
host=args.host,
port=args.port,
app_dir='.',
log_config=custom_logging_config)
if args.tools == "paddle2coreml":
if any([
args.p2c_paddle_model_dir is None,
args.p2c_coreml_model_dir is None,
args.p2c_input_names is None, args.p2c_input_shapes is None,
args.p2c_output_names is None
]):
raise Exception(
"paddle2coreml need to define --p2c_paddle_model_dir, --p2c_coreml_model_dir, --p2c_input_names, --p2c_input_shapes, --p2c_output_names"
)
import coremltools as ct
import os
import numpy as np
def type_to_np_dtype(dtype):
if dtype == 'float32':
return np.float32
elif dtype == 'float64':
return np.float64
elif dtype == 'int32':
return np.int32
elif dtype == 'int64':
return np.int64
elif dtype == 'uint8':
return np.uint8
elif dtype == 'uint16':
return np.uint16
elif dtype == 'uint32':
return np.uint32
elif dtype == 'uint64':
return np.uint64
elif dtype == 'int8':
return np.int8
elif dtype == 'int16':
return np.int16
else:
raise Exception("Unsupported dtype: {}".format(dtype))
input_names = args.p2c_input_names.split(' ')
input_shapes = [[int(i) for i in shape.split(',')]
for shape in args.p2c_input_shapes.split(' ')]
input_dtypes = map(type_to_np_dtype, args.p2c_input_dtypes.split(' '))
output_names = args.p2c_output_names.split(' ')
sample_input = [
ct.TensorType(
name=k,
shape=s,
dtype=d, )
for k, s, d in zip(input_names, input_shapes, input_dtypes)
]
coreml_model = ct.convert(
args.p2c_paddle_model_dir,
convert_to="mlprogram",
minimum_deployment_target=ct.target.macOS13,
inputs=sample_input,
outputs=[ct.TensorType(name=name) for name in output_names], )
coreml_model.save(
os.path.join(args.p2c_coreml_model_dir,
args.p2c_coreml_model_name))
if __name__ == '__main__':
main()