-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy path1314.Matrix_Block_Sum.cpp
72 lines (67 loc) · 1.98 KB
/
1314.Matrix_Block_Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/*
written by Pankaj Kumar.
country:-INDIA
Institute: National Institute of Technology, Uttarakhand
*/
typedef long long ll ;
typedef unsigned long long ull;
typedef vector<ll> vl;
/* Abbrevations */
#define ff first
#define ss second
#define mp make_pair
#define pb push_back
#define Endl "\n"
#define all(V) (V).begin(),(V).end()
#define srt(V) sort(all(V))
#define srtGreat(V) sort(all(V),greater<ll>())
// some extra
#define printv(v) for(ll i=0;i<ll(v.size());i++){cout<<v[i]<<" ";} line;
#define precision(x) cout<<fixed<<setprecision(x);
#define sz(V) ll(V.size())
/* ascii value
A=65,Z=90,a=97,z=122
*/
/* --------------------MAIN PROGRAM----------------------------*/
// to run ctrl+b
const ll INF=LONG_MAX;
const ll mod1=1e9+7;
const ll mod2=998244353;
// Techniques
// divide into cases, brute force, pattern finding
// sort, greedy, binary search, two pointer
// transform into graph
// add main code here
class Solution {
public:
vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {
int n=mat.size();
int m=mat[0].size();
vector<vector<int>> dp(n+1,vector<int>(m+1,0));
vector<vector<int>> result(n,vector<int>(m));
int sum=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
dp[i][j]=dp[i][j-1]+dp[i-1][j]+mat[i-1][j-1]-dp[i-1][j-1];
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
int start_r=max(1,i-k);
int start_c=max(1,j-k);
int end_r=min(i+k,n);
int end_c=min(j+k,m);
result[i-1][j-1]=dp[end_r][end_c]+dp[start_r-1][start_c-1]-(dp[end_r][start_c-1]+dp[start_r-1][end_c]);
}
}
return result;
}
};
/* -----------------END OF PROGRAM --------------------*/
/*
* stuff you should look before submission
* constraint and time limit
* int overflow
* special test case (n=0||n=1||n=2)
* don't get stuck on one approach if you get wrong answer
*/