-
Notifications
You must be signed in to change notification settings - Fork 109
/
dgemm-cudastf.cu
199 lines (173 loc) · 6.81 KB
/
dgemm-cudastf.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
///
/// Copyright (c) 2017, Intel Corporation
/// Copyright (c) 2024, NVIDIA
///
/// Redistribution and use in source and binary forms, with or without
/// modification, are permitted provided that the following conditions
/// are met:
///
/// * Redistributions of source code must retain the above copyright
/// notice, this list of conditions and the following disclaimer.
/// * Redistributions in binary form must reproduce the above
/// copyright notice, this list of conditions and the following
/// disclaimer in the documentation and/or other materials provided
/// with the distribution.
/// * Neither the name of Intel Corporation nor the names of its
/// contributors may be used to endorse or promote products
/// derived from this software without specific prior written
/// permission.
///
/// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
/// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
/// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
/// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
/// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
/// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
/// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
/// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
/// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
/// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
/// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
/// POSSIBILITY OF SUCH DAMAGE.
//////////////////////////////////////////////////////////////////////
///
/// NAME: dgemm
///
/// PURPOSE: This program tests the efficiency with which a dense matrix
/// dense multiplication is carried out
///
/// USAGE: The program takes as input the matrix order,
/// the number of times the matrix-matrix multiplication
/// is carried out, and, optionally, a tile size for matrix
/// blocking
///
/// <progname> <# iterations> <matrix order> [<tile size>]
///
/// The output consists of diagnostics to make sure the
/// algorithm worked, and of timing statistics.
///
/// FUNCTIONS CALLED:
///
/// Other than OpenMP or standard C functions, the following
/// functions are used in this program:
///
/// wtime()
///
/// HISTORY: Written by Rob Van der Wijngaart, February 2009.
/// Converted to C++11 by Jeff Hammond, December, 2017.
/// CUDA STF by Cedric Augonnet, October 2024.
///
//////////////////////////////////////////////////////////////////////
#include "prk_util.h"
#include "prk_cuda.h"
#include <cuda/experimental/stf.cuh>
using namespace cuda::experimental::stf;
int main(int argc, char * argv[])
{
//////////////////////////////////////////////////////////////////////
/// Read and test input parameters
//////////////////////////////////////////////////////////////////////
std::cout << "Parallel Research Kernels version " << PRKVERSION << std::endl;
std::cout << "C++11 CUDA STF Dense matrix-matrix multiplication: C += A x B" << std::endl;
int iterations;
int order;
try {
if (argc < 3) {
throw "Usage: <# iterations> <matrix order> [tile size]";
}
iterations = std::atoi(argv[1]);
if (iterations < 1) {
throw "ERROR: iterations must be >= 1";
}
order = std::atoi(argv[2]);
if (order <= 0) {
throw "ERROR: Matrix Order must be greater than 0";
} else if (order > prk::get_max_matrix_size()) {
throw "ERROR: matrix dimension too large - overflow risk";
}
}
catch (const char * e) {
std::cout << e << std::endl;
return 1;
}
std::cout << "Number of iterations = " << iterations << std::endl;
std::cout << "Matrix order = " << order << std::endl;
//////////////////////////////////////////////////////////////////////
/// Allocate space for matrices
//////////////////////////////////////////////////////////////////////
context ctx;
double dgemm_time{0};
auto A = ctx.logical_data(shape_of<slice<double, 2>>(order, order));
auto B = ctx.logical_data(shape_of<slice<double, 2>>(order, order));
auto C = ctx.logical_data(shape_of<slice<double, 2>>(order, order));
ctx.parallel_for(A.shape(), A.write(), B.write(), C.write())->*[]__device__(size_t i, size_t j, auto dA, auto dB, auto dC)
{
dA(i, j) = (double)i;
dB(i, j) = (double)i;
dC(i, j) = 0.0;
};
{
for (int iter = 0; iter<=iterations; iter++) {
if (iter==1) {
cudaStreamSynchronize(ctx.task_fence());
dgemm_time = prk::wtime();
}
ctx.parallel_for(C.shape(), A.read(), B.read(), C.rw())->*[]__device__ (size_t i, size_t j, auto dA, auto dB, auto dC)
{
double Ctemp(0);
for (size_t k = 0; k < dC.extent(0); k++) {
Ctemp += dA(i, k)*dB(k, j);
}
dC(i,j) += Ctemp;
};
}
cudaStreamSynchronize(ctx.task_fence());
dgemm_time = prk::wtime() - dgemm_time;
}
//////////////////////////////////////////////////////////////////////
/// Analyze and output results
//////////////////////////////////////////////////////////////////////
const auto forder = static_cast<double>(order);
const auto reference = 0.25 * prk::pow(forder,3) * prk::pow(forder-1.0,2) * (iterations+1);
double checksum;
ctx.host_launch(C.read())->*[&](auto hC)
{
for (size_t j = 0; j < hC.extent(1); j++)
for (size_t i = 0; i < hC.extent(0); i++)
{
checksum += hC(i, j);
}
};
cudaStreamSynchronize(ctx.task_fence());
const auto epsilon = 1.0e-8;
const auto residuum = prk::abs(checksum-reference)/reference;
if (residuum < epsilon) {
#if VERBOSE
std::cout << "Reference checksum = " << reference << "\n"
<< "Actual checksum = " << checksum << std::endl;
#endif
std::cout << "Solution validates" << std::endl;
auto avgtime = dgemm_time/iterations;
auto nflops = 2.0 * prk::pow(forder,3);
std::cout << "Rate (MF/s): " << 1.0e-6 * nflops/avgtime
<< " Avg time (s): " << avgtime << std::endl;
} else {
std::cout << "Reference checksum = " << reference << "\n"
<< "Actual checksum = " << checksum << std::endl;
#if VERBOSE
for (int i=0; i<order; ++i)
for (int j=0; j<order; ++j)
std::cout << "A(" << i << "," << j << ") = " << A[i*order+j] << "\n";
for (int i=0; i<order; ++i)
for (int j=0; j<order; ++j)
std::cout << "B(" << i << "," << j << ") = " << B[i*order+j] << "\n";
for (int i=0; i<order; ++i)
for (int j=0; j<order; ++j)
std::cout << "C(" << i << "," << j << ") = " << C[i*order+j] << "\n";
std::cout << std::endl;
#endif
return 1;
}
ctx.finalize();
return 0;
}