-
Notifications
You must be signed in to change notification settings - Fork 109
/
nstream-cuda.cu
225 lines (191 loc) · 7.5 KB
/
nstream-cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
///
/// Copyright (c) 2020, Intel Corporation
/// Copyright (c) 2021, NVIDIA
///
/// Redistribution and use in source and binary forms, with or without
/// modification, are permitted provided that the following conditions
/// are met:
///
/// * Redistributions of source code must retain the above copyright
/// notice, this list of conditions and the following disclaimer.
/// * Redistributions in binary form must reproduce the above
/// copyright notice, this list of conditions and the following
/// disclaimer in the documentation and/or other materials provided
/// with the distribution.
/// * Neither the name of Intel Corporation nor the names of its
/// contributors may be used to endorse or promote products
/// derived from this software without specific prior written
/// permission.
///
/// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
/// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
/// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
/// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
/// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
/// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
/// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
/// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
/// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
/// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
/// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
/// POSSIBILITY OF SUCH DAMAGE.
//////////////////////////////////////////////////////////////////////
///
/// NAME: nstream
///
/// PURPOSE: To compute memory bandwidth when adding a vector of a given
/// number of double precision values to the scalar multiple of
/// another vector of the same length, and storing the result in
/// a third vector.
///
/// USAGE: The program takes as input the number
/// of iterations to loop over the triad vectors and
/// the length of the vectors.
///
/// <progname> <# iterations> <vector length>
///
/// The output consists of diagnostics to make sure the
/// algorithm worked, and of timing statistics.
///
/// NOTES: Bandwidth is determined as the number of words read, plus the
/// number of words written, times the size of the words, divided
/// by the execution time. For a vector length of N, the total
/// number of words read and written is 4*N*sizeof(double).
///
/// HISTORY: This code is loosely based on the Stream benchmark by John
/// McCalpin, but does not follow all the Stream rules. Hence,
/// reported results should not be associated with Stream in
/// external publications
///
/// Converted to C++11 by Jeff Hammond, November 2017.
///
//////////////////////////////////////////////////////////////////////
#include "prk_util.h"
#include "prk_cuda.h"
__global__ void nstream(const unsigned n, const double scalar, double * A, const double * B, const double * C)
{
auto i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n) {
A[i] += B[i] + scalar * C[i];
}
}
__global__ void nstream2(const unsigned n, const double scalar, double * A, const double * B, const double * C)
{
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; i += blockDim.x * gridDim.x) {
A[i] += B[i] + scalar * C[i];
}
}
int main(int argc, char * argv[])
{
std::cout << "Parallel Research Kernels version " << PRKVERSION << std::endl;
std::cout << "C++11/CUDA STREAM triad: A = B + scalar * C" << std::endl;
prk::CUDA::info info;
info.print();
//////////////////////////////////////////////////////////////////////
/// Read and test input parameters
//////////////////////////////////////////////////////////////////////
int iterations;
size_t length, block_size=256;
bool grid_stride = false;
try {
if (argc < 3) {
throw "Usage: <# iterations> <vector length> [<block_size>] [<grid_stride>]";
}
iterations = std::atoi(argv[1]);
if (iterations < 1) {
throw "ERROR: iterations must be >= 1";
}
length = std::atol(argv[2]);
if (length <= 0) {
throw "ERROR: vector length must be positive";
}
if (argc>3) {
block_size = std::atoi(argv[3]);
}
if (argc>4) {
grid_stride = prk::parse_boolean(std::string(argv[4]));
}
}
catch (const char * e) {
std::cout << e << std::endl;
return 1;
}
std::cout << "Number of iterations = " << iterations << std::endl;
std::cout << "Vector length = " << length << std::endl;
std::cout << "Block size = " << block_size << std::endl;
std::cout << "Grid stride = " << (grid_stride ? "yes" : "no") << std::endl;
dim3 dimBlock(block_size, 1, 1);
dim3 dimGrid(prk::divceil(length,block_size), 1, 1);
info.checkDims(dimBlock, dimGrid);
//////////////////////////////////////////////////////////////////////
// Allocate space and perform the computation
//////////////////////////////////////////////////////////////////////
double nstream_time(0);
double * h_A = prk::CUDA::malloc_host<double>(length);
double * h_B = prk::CUDA::malloc_host<double>(length);
double * h_C = prk::CUDA::malloc_host<double>(length);
for (size_t i=0; i<length; ++i) {
h_A[i] = 0;
h_B[i] = 2;
h_C[i] = 2;
}
double * d_A = prk::CUDA::malloc_device<double>(length);
double * d_B = prk::CUDA::malloc_device<double>(length);
double * d_C = prk::CUDA::malloc_device<double>(length);
prk::CUDA::copyH2D(d_A, h_A, length);
prk::CUDA::copyH2D(d_B, h_B, length);
prk::CUDA::copyH2D(d_C, h_C, length);
double scalar(3);
{
for (int iter = 0; iter<=iterations; iter++) {
if (iter==1) {
prk::CUDA::sync();
nstream_time = prk::wtime();
}
if (grid_stride) {
nstream2<<<dimGrid, dimBlock>>>(static_cast<unsigned>(length), scalar, d_A, d_B, d_C);
} else {
nstream<<<dimGrid, dimBlock>>>(static_cast<unsigned>(length), scalar, d_A, d_B, d_C);
}
prk::CUDA::sync();
}
nstream_time = prk::wtime() - nstream_time;
}
prk::CUDA::copyD2H(h_A, d_A, length);
prk::CUDA::free(d_A);
prk::CUDA::free(d_B);
prk::CUDA::free(d_C);
//////////////////////////////////////////////////////////////////////
/// Analyze and output results
//////////////////////////////////////////////////////////////////////
double ar(0);
double br(2);
double cr(2);
for (int i=0; i<=iterations; i++) {
ar += br + scalar * cr;
}
ar *= length;
double asum(0);
for (int i=0; i<length; i++) {
asum += prk::abs(h_A[i]);
}
prk::CUDA::free_host(h_A);
prk::CUDA::free_host(h_B);
prk::CUDA::free_host(h_C);
double epsilon=1.e-8;
if (prk::abs(ar-asum)/asum > epsilon) {
std::cout << "Failed Validation on output array\n"
<< std::setprecision(16)
<< " Expected checksum: " << ar << "\n"
<< " Observed checksum: " << asum << std::endl;
std::cout << "ERROR: solution did not validate" << std::endl;
return 1;
} else {
std::cout << "Solution validates" << std::endl;
double avgtime = nstream_time/iterations;
double nbytes = 4.0 * length * sizeof(double);
std::cout << "Rate (MB/s): " << 1.e-6*nbytes/avgtime
<< " Avg time (s): " << avgtime << std::endl;
}
return 0;
}