Day 20 of #100DaysOfCode
- Intermediate Machine Learning Course (40% done)
- House price prediction
-
Kaggle's Intermediate Machine Learning course
-
- Lesson 1: Introduction - My Notebook
-
- Lesson 2: Missing Values - My Notebook
-
Lesson 3: Categorical Variables - My Notebook
- Intermediate Machine Learning Course
- Handling Missing values in data
-
- by dropping columns
-
- by imputing the mean values of the columns
-
- by imputing the mean values and adding another column having True/False for respected imputed values
- Handling Categorical columns in data
-
- by dropping categorical columns
-
- Changing them to numbers using Ordinal Encoder
-
- Creating each numerical column for every unique value using One Hot Encoding
- Also House price prediction
- One by dropping missing columns using
DecisionTreeRegressor
. - One by dropping missing columns using
RandomForestRegressor
. - One by Imputing missing values, doing Ordinal Encoding using
RandomForestRegressor
.
- Jupyter Notebook
- Python 3.10.2
- Numpy 1.22.4
- pandas 1.4.2
- scikit-learn 1.1.1
- L1 - Introduction.ipynb
- L2 - Missing_values.ipynb
- L3 - Categorical_variables.ipynb
- House_price_prediction_2.ipynb
- House_price_prediction_3.ipynb
- House_price_prediction_4.ipynb
Today I learned how to handle misisng values using SimpleImputer and categorical columns using One Hot Encoding & Ordinal Encoding. Also, did house price prediction using DecisionTreeRegressor
and RandomForestRegressor
applied imputer & ordinal encoding too. Today was great!!!