-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathmain.py
251 lines (234 loc) · 11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
from text import text_to_sequence
import numpy as np
from scipy.io import wavfile
import torch
import json
import commons
import utils
import sys
import pathlib
import onnxruntime as ort
import gradio as gr
import argparse
import time
import os
import io
from scipy.io.wavfile import write
from flask import Flask, request
from threading import Thread
import openai
import requests
class VitsGradio:
def __init__(self):
self.lan = ["中文","日文","自动"]
self.chatapi = ["gpt-3.5-turbo","gpt3"]
self.modelPaths = []
for root,dirs,files in os.walk("checkpoints"):
for dir in dirs:
self.modelPaths.append(dir)
with gr.Blocks() as self.Vits:
with gr.Tab("调试用"):
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
self.text = gr.TextArea(label="Text", value="你好")
with gr.Accordion(label="测试api", open=False):
self.local_chat1 = gr.Checkbox(value=False, label="使用网址+文本进行模拟")
self.url_input = gr.TextArea(label="键入测试", value="http://127.0.0.1:8080/chat?Text=")
butto = gr.Button("测试从网页端获取文本")
btnVC = gr.Button("测试tts+对话程序")
with gr.Column():
output2 = gr.TextArea(label="回复")
output1 = gr.Audio(label="采样率22050")
output3 = gr.outputs.File(label="44100hz: output.wav")
butto.click(self.Simul, inputs=[self.text, self.url_input], outputs=[output2,output3])
btnVC.click(self.tts_fn, inputs=[self.text], outputs=[output1,output2])
with gr.Tab("控制面板"):
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
self.api_input1 = gr.TextArea(label="输入api-key或本地存储说话模型的路径", value="https://platform.openai.com/account/api-keys")
with gr.Accordion(label="chatbot选择", open=False):
self.api_input2 = gr.Checkbox(value=True, label="采用gpt3.5")
self.local_chat1 = gr.Checkbox(value=False, label="启动本地chatbot")
self.local_chat2 = gr.Checkbox(value=True, label="是否量化")
res = gr.TextArea()
Botselection = gr.Button("确认模型")
Botselection.click(self.check_bot, inputs=[self.api_input1,self.api_input2,self.local_chat1,self.local_chat2], outputs = [res])
self.input1 = gr.Dropdown(label = "模型", choices = self.modelPaths, value = self.modelPaths[0], type = "value")
self.input2 = gr.Dropdown(label="Language", choices=self.lan, value="自动", interactive=True)
with gr.Column():
btnVC = gr.Button("Submit")
self.input3 = gr.Dropdown(label="Speaker", choices=list(range(101)), value=0, interactive=True)
self.input4 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声比例(noise scale),以控制情感", value=0.267)
self.input5 = gr.Slider(minimum=0, maximum=1.0, label="更改噪声偏差(noise scale w),以控制音素长短", value=0.7)
self.input6 = gr.Slider(minimum=0.1, maximum=10, label="duration", value=1)
statusa = gr.TextArea()
btnVC.click(self.create_tts_fn, inputs=[self.input1, self.input2, self.input3, self.input4, self.input5, self.input6], outputs = [statusa])
def Simul(self,text,url_input):
web = url_input + text
res = requests.get(web)
music = res.content
with open('output.wav', 'wb') as code:
code.write(music)
file_path = "output.wav"
return web,file_path
def chatgpt(self,text):
self.messages.append({"role": "user", "content": text},)
chat = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages= self.messages)
reply = chat.choices[0].message.content
return reply
def ChATGLM(self,text):
if text == 'clear':
self.history = []
response, new_history = self.model.chat(self.tokenizer, text, self.history)
response = response.replace(" ",'').replace("\n",'.')
self.history = new_history
return response
def gpt3_chat(self,text):
call_name = "Waifu"
openai.api_key = args.key
identity = ""
start_sequence = '\n'+str(call_name)+':'
restart_sequence = "\nYou: "
if 1 == 1:
prompt0 = text #当期prompt
if text == 'quit':
return prompt0
prompt = identity + prompt0 + start_sequence
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0.5,
max_tokens=1000,
top_p=1.0,
frequency_penalty=0.5,
presence_penalty=0.0,
stop=["\nYou:"]
)
return response['choices'][0]['text'].strip()
def check_bot(self,api_input1,api_input2,local_chat1,local_chat2):
if local_chat1:
from transformers import AutoTokenizer, AutoModel
self.tokenizer = AutoTokenizer.from_pretrained(api_input1, trust_remote_code=True)
if local_chat2:
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True).half().quantize(4).cuda()
else:
self.model = AutoModel.from_pretrained(api_input1, trust_remote_code=True)
self.history = []
else:
self.messages = []
openai.api_key = api_input1
return "Finished"
def is_japanese(self,string):
for ch in string:
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
return True
return False
def is_english(self,string):
import re
pattern = re.compile('^[A-Za-z0-9.,:;!?()_*"\' ]+$')
if pattern.fullmatch(string):
return True
else:
return False
def get_symbols_from_json(self,path):
assert os.path.isfile(path)
with open(path, 'r') as f:
data = json.load(f)
return data['symbols']
def sle(self,language,text):
text = text.replace('\n','。').replace(' ',',')
if language == "中文":
tts_input1 = "[ZH]" + text + "[ZH]"
return tts_input1
elif language == "自动":
tts_input1 = f"[JA]{text}[JA]" if self.is_japanese(text) else f"[ZH]{text}[ZH]"
return tts_input1
elif language == "日文":
tts_input1 = "[JA]" + text + "[JA]"
return tts_input1
def get_text(self,text,hps_ms):
text_norm = text_to_sequence(text,hps_ms.data.text_cleaners)
if hps_ms.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def create_tts_fn(self,path, input2, input3, n_scale= 0.667,n_scale_w = 0.8, l_scale = 1 ):
self.symbols = self.get_symbols_from_json(f"checkpoints/{path}/config.json")
self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
phone_dict = {
symbol: i for i, symbol in enumerate(self.symbols)
}
self.ort_sess = ort.InferenceSession(f"checkpoints/{path}/model.onnx")
self.language = input2
self.speaker_id = input3
self.n_scale = n_scale
self.n_scale_w = n_scale_w
self.l_scale = l_scale
print(self.language,self.speaker_id,self.n_scale)
return 'success'
def tts_fn(self,text):
if self.local_chat1:
text = self.chatgpt(text)
elif self.api_input2:
text = self.ChATGLM(text)
else:
text = self.gpt3_chat(text)
print(text)
text =self.sle(self.language,text)
seq = text_to_sequence(text, cleaner_names=self.hps.data.text_cleaners)
if self.hps.data.add_blank:
seq = commons.intersperse(seq, 0)
with torch.no_grad():
x = np.array([seq], dtype=np.int64)
x_len = np.array([x.shape[1]], dtype=np.int64)
sid = np.array([self.speaker_id], dtype=np.int64)
scales = np.array([self.n_scale, self.n_scale_w, self.l_scale], dtype=np.float32)
scales.resize(1, 3)
ort_inputs = {
'input': x,
'input_lengths': x_len,
'scales': scales,
'sid': sid
}
t1 = time.time()
audio = np.squeeze(self.ort_sess.run(None, ort_inputs))
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
audio = np.clip(audio, -32767.0, 32767.0)
t2 = time.time()
spending_time = "推理时间:"+str(t2-t1)+"s"
print(spending_time)
bytes_wav = bytes()
byte_io = io.BytesIO(bytes_wav)
wavfile.write('moe/temp1.wav',self.hps.data.sampling_rate, audio.astype(np.int16))
cmd = 'ffmpeg -y -i ' + 'moe/temp1.wav' + ' -ar 44100 ' + 'moe/temp2.wav'
os.system(cmd)
return (self.hps.data.sampling_rate, audio),text.replace('[JA]','').replace('[ZH]','')
app = Flask(__name__)
print("开始部署")
grVits = VitsGradio()
@app.route('/chat')
def text_api():
message = request.args.get('Text','')
audio,text = grVits.tts_fn(message)
text = text.replace('[JA]','').replace('[ZH]','')
with open('moe/temp2.wav','rb') as bit:
wav_bytes = bit.read()
headers = {
'Content-Type': 'audio/wav',
'Text': text.encode('utf-8')}
return wav_bytes, 200, headers
def gradio_interface():
return grVits.Vits.launch()
if __name__ == '__main__':
api_thread = Thread(target=app.run, args=("0.0.0.0", 8080))
gradio_thread = Thread(target=gradio_interface)
api_thread.start()
gradio_thread.start()