forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2_basics.py
194 lines (152 loc) · 6.73 KB
/
2_basics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
.. currentmodule:: dgl
DGLGraph and Node/edge Features
===============================
**Author**: `Minjie Wang <https://jermainewang.github.io/>`_, Quan Gan, Yu Gai,
Zheng Zhang
In this tutorial, you learn how to create a graph and how to read and write node and edge representations.
"""
###############################################################################
# Creating a graph
# ----------------
# The design of :class:`DGLGraph` was influenced by other graph libraries. You
# can create a graph from networkx and convert it into a :class:`DGLGraph` and
# vice versa.
import networkx as nx
import dgl
g_nx = nx.petersen_graph()
g_dgl = dgl.DGLGraph(g_nx)
import matplotlib.pyplot as plt
plt.subplot(121)
nx.draw(g_nx, with_labels=True)
plt.subplot(122)
nx.draw(g_dgl.to_networkx(), with_labels=True)
plt.show()
###############################################################################
# There are many ways to construct a :class:`DGLGraph`. Below are the allowed
# data types ordered by our recommendataion.
#
# * A pair of arrays ``(u, v)`` storing the source and destination nodes respectively.
# They can be numpy arrays or tensor objects from the backend framework.
# * ``scipy`` sparse matrix representing the adjacency matrix of the graph to be
# constructed.
# * ``networkx`` graph object.
# * A list of edges in the form of integer pairs.
#
# The examples below construct the same star graph via different methods.
#
# :class:`DGLGraph` nodes are a consecutive range of integers between 0 and
# :func:`number_of_nodes() <DGLGraph.number_of_nodes>`.
# :class:`DGLGraph` edges are in order of their additions. Note that
# edges are accessed in much the same way as nodes, with one extra feature:
# *edge broadcasting*.
import torch as th
import numpy as np
import scipy.sparse as spp
# Create a star graph from a pair of arrays (using ``numpy.array`` works too).
u = th.tensor([0, 0, 0, 0, 0])
v = th.tensor([1, 2, 3, 4, 5])
star1 = dgl.DGLGraph((u, v))
# Create the same graph from a scipy sparse matrix (using ``scipy.sparse.csr_matrix`` works too).
adj = spp.coo_matrix((np.ones(len(u)), (u.numpy(), v.numpy())))
star3 = dgl.DGLGraph(adj)
###############################################################################
# You can also create a graph by progressively adding more nodes and edges.
# Although it is not as efficient as the above constructors, it is suitable
# for applications where the graph cannot be constructed in one shot.
g = dgl.DGLGraph()
g.add_nodes(10)
# A couple edges one-by-one
for i in range(1, 4):
g.add_edge(i, 0)
# A few more with a paired list
src = list(range(5, 8)); dst = [0]*3
g.add_edges(src, dst)
# finish with a pair of tensors
src = th.tensor([8, 9]); dst = th.tensor([0, 0])
g.add_edges(src, dst)
# Edge broadcasting will do star graph in one go!
g = dgl.DGLGraph()
g.add_nodes(10)
src = th.tensor(list(range(1, 10)));
g.add_edges(src, 0)
# Visualize the graph.
nx.draw(g.to_networkx(), with_labels=True)
plt.show()
###############################################################################
# Assigning a feature
# -------------------
# You can also assign features to nodes and edges of a :class:`DGLGraph`. The
# features are represented as dictionary of names (strings) and tensors,
# called **fields**.
#
# The following code snippet assigns each node a vector (len=3).
#
# .. note::
#
# DGL aims to be framework-agnostic, and currently it supports PyTorch and
# MXNet tensors. The following examples use PyTorch only.
import dgl
import torch as th
x = th.randn(10, 3)
g.ndata['x'] = x
###############################################################################
# :func:`ndata <DGLGraph.ndata>` is a syntax sugar to access the feature
# data of all nodes. To get the features of some particular nodes, slice out
# the corresponding rows.
g.ndata['x'][0] = th.zeros(1, 3)
g.ndata['x'][[0, 1, 2]] = th.zeros(3, 3)
g.ndata['x'][th.tensor([0, 1, 2])] = th.randn((3, 3))
###############################################################################
# Assigning edge features is similar to that of node features,
# except that you can also do it by specifying endpoints of the edges.
g.edata['w'] = th.randn(9, 2)
# Access edge set with IDs in integer, list, or integer tensor
g.edata['w'][1] = th.randn(1, 2)
g.edata['w'][[0, 1, 2]] = th.zeros(3, 2)
g.edata['w'][th.tensor([0, 1, 2])] = th.zeros(3, 2)
# You can get the edge ids by giving endpoints, which are useful for accessing the features.
g.edata['w'][g.edge_id(1, 0)] = th.ones(1, 2) # edge 1 -> 0
g.edata['w'][g.edge_ids([1, 2, 3], [0, 0, 0])] = th.ones(3, 2) # edges [1, 2, 3] -> 0
# Use edge broadcasting whenever applicable.
g.edata['w'][g.edge_ids([1, 2, 3], [0, 0, 0])] = th.ones(3, 2) # edges [1, 2, 3] -> 0
###############################################################################
# After assignments, each node or edge field will be associated with a scheme
# containing the shape and data type (dtype) of its field value.
print(g.node_attr_schemes())
g.ndata['x'] = th.zeros((10, 4))
print(g.node_attr_schemes())
###############################################################################
# You can also remove node or edge states from the graph. This is particularly
# useful to save memory during inference.
g.ndata.pop('x')
g.edata.pop('w')
###############################################################################
# Working with multigraphs
# ~~~~~~~~~~~~~~~~~~~~~~~~
# Many graph applications need parallel edges,
# which class:DGLGraph supports by default.
g_multi = dgl.DGLGraph()
g_multi.add_nodes(10)
g_multi.ndata['x'] = th.randn(10, 2)
g_multi.add_edges(list(range(1, 10)), 0)
g_multi.add_edge(1, 0) # two edges on 1->0
g_multi.edata['w'] = th.randn(10, 2)
g_multi.edges[1].data['w'] = th.zeros(1, 2)
print(g_multi.edges())
###############################################################################
# An edge in multigraph cannot be uniquely identified by using its incident nodes
# :math:`u` and :math:`v`; query their edge IDs use ``edge_id`` interface.
_, _, eid_10 = g_multi.edge_id(1, 0, return_uv=True)
g_multi.edges[eid_10].data['w'] = th.ones(len(eid_10), 2)
print(g_multi.edata['w'])
###############################################################################
# .. note::
#
# * Updating a feature of different schemes raises the risk of error on individual nodes (or
# node subset).
###############################################################################
# Next steps
# ----------
# In the :doc:`next tutorial <3_pagerank>` you learn the
# DGL message passing interface by implementing PageRank.