forked from servalproject/serval-dna
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrhizome_crypto.c
404 lines (365 loc) · 14.1 KB
/
rhizome_crypto.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/*
Serval Distributed Numbering Architecture (DNA)
Copyright (C) 2010 Paul Gardner-Stephen
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "serval.h"
#include "rhizome.h"
#include <stdlib.h>
#include <ctype.h>
/* Work out the encrypt/decrypt key for the supplied manifest.
If the manifest is not encrypted, then return NULL.
*/
unsigned char *rhizome_bundle_shared_secret(rhizome_manifest *m)
{
return NULL;
}
int rhizome_manifest_createid(rhizome_manifest *m)
{
m->haveSecret=1;
int r=crypto_sign_edwards25519sha512batch_keypair(m->cryptoSignPublic,m->cryptoSignSecret);
if (!r) return 0;
return WHY("Failed to create keypair for manifest ID.");
}
#ifdef DEPRECATED
int rhizome_store_keypair_bytes(unsigned char *p,unsigned char *s) {
/* XXX TODO Secrets should be encrypted using a keyring password. */
if (sqlite_exec_void("INSERT INTO KEYPAIRS(public,private) VALUES('%s','%s');",
rhizome_bytes_to_hex(p,crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES),
rhizome_bytes_to_hex(s,crypto_sign_edwards25519sha512batch_SECRETKEYBYTES))<0)
return WHY("Failed to store key pair.");
return 0;
}
int rhizome_find_keypair_bytes(unsigned char *p,unsigned char *s) {
sqlite3_stmt *statement;
char sql[1024];
const char *cmdtail;
snprintf(sql,1024,"SELECT private from KEYPAIRS WHERE public='%s';",
rhizome_bytes_to_hex(p,crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES));
if (sqlite3_prepare_v2(rhizome_db,sql,strlen(sql)+1,&statement,&cmdtail)
!= SQLITE_OK) {
sqlite3_finalize(statement);
return WHY(sqlite3_errmsg(rhizome_db));
}
if ( sqlite3_step(statement) == SQLITE_ROW ) {
if (sqlite3_column_type(statement,0)==SQLITE_TEXT) {
const unsigned char *hex=sqlite3_column_text(statement,0);
sqlite3_finalize(statement);
if (fromhexstr(s, (const char *)hex, crypto_sign_edwards25519sha512batch_SECRETKEYBYTES) != -1) {
/* XXX TODO Decrypt secret using a keyring password */
return 0;
}
return WHY("Database contains invalid secret key");
}
}
sqlite3_finalize(statement);
return WHY("Could not find matching secret key.");
}
#endif
/*
Return -1 if an error occurs.
Return 0 if the author's private key is located and the XOR is performed successfully.
Return 1 if the author's identity is not in the keyring.
Return 2 if the author's identity is in the keyring but has no rhizome secret.
*/
int rhizome_bk_xor(const unsigned char *authorSid, // binary
unsigned char bid[crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES],
unsigned char bkin[crypto_sign_edwards25519sha512batch_SECRETKEYBYTES],
unsigned char bkout[crypto_sign_edwards25519sha512batch_SECRETKEYBYTES])
{
IN();
if (crypto_sign_edwards25519sha512batch_SECRETKEYBYTES > crypto_hash_sha512_BYTES)
{ RETURN(WHY("BK needs to be longer than it can be")); }
int cn=0,in=0,kp=0;
if (!keyring_find_sid(keyring,&cn,&in,&kp,authorSid)) {
if (debug & DEBUG_RHIZOME) DEBUG("identity not in keyring");
{ RETURN(1); }
}
kp = keyring_identity_find_keytype(keyring, cn, in, KEYTYPE_RHIZOME);
if (kp == -1) {
if (debug & DEBUG_RHIZOME) DEBUG("identity has no Rhizome Secret");
RETURN(2);
}
int rs_len=keyring->contexts[cn]->identities[in]->keypairs[kp]->private_key_len;
if (rs_len<16||rs_len>1024)
{ RETURN(WHYF("invalid Rhizome Secret: length=%d", rs_len)); }
unsigned char *rs=keyring->contexts[cn]->identities[in]->keypairs[kp]->private_key;
int combined_len=rs_len+crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES;
unsigned char buffer[combined_len];
bcopy(&rs[0],&buffer[0],rs_len);
bcopy(&bid[0],&buffer[rs_len],crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES);
unsigned char hash[crypto_hash_sha512_BYTES];
crypto_hash_sha512(hash,buffer,combined_len);
int i;
for(i = 0; i != crypto_sign_edwards25519sha512batch_SECRETKEYBYTES; ++i)
bkout[i]=bkin[i]^hash[i];
bzero(&buffer[0],combined_len);
bzero(&hash[0],crypto_hash_sha512_BYTES);
RETURN(0);
}
/* See if the manifest has a BK entry, and if so, use it to obtain the
private key for the BID. Decoding BK's relies on the provision of
the appropriate SID.
Return 0 if the private key was extracted, 1 if not. Return -1 if an error occurs.
XXX Note that this function is not able to verify that the private key
is correct, as there is no exposed API in NaCl for calculating the
public key from a cryptosign private key. We thus have to trust that
the supplied SID is correct.
*/
int rhizome_extract_privatekey(rhizome_manifest *m, const unsigned char *authorSid)
{
IN();
char *bk = rhizome_manifest_get(m, "BK", NULL, 0);
if (!bk) { RETURN(WHY("missing BK field")); }
unsigned char bkBytes[RHIZOME_BUNDLE_KEY_BYTES];
if (fromhexstr(bkBytes, bk, RHIZOME_BUNDLE_KEY_BYTES) == -1)
{ RETURN(WHYF("invalid BK field: %s", bk)); }
switch (rhizome_bk_xor(authorSid, m->cryptoSignPublic, bkBytes, m->cryptoSignSecret)) {
case -1:
RETURN(WHY("rhizome_bk_xor() failed"));
case 0:
RETURN(rhizome_verify_bundle_privatekey(m));
}
RETURN(WHYF("Rhizome secret for %s not found. (Have you unlocked the identity?)", alloca_tohex_sid(authorSid)));
}
/*
Test to see if the given manifest was created (signed) by any unlocked identity currently in the
keyring.
Returns -1 if an error occurs, eg, the manifest contains an invalid BK field.
Return 0 if the manifest's BK field was produced by any currently unlocked SID.
Returns 1 if the manifest has no BK field.
Returns 2 otherwise.
*/
int rhizome_is_self_signed(rhizome_manifest *m)
{
IN();
char *bk = rhizome_manifest_get(m, "BK", NULL, 0);
if (!bk) {
if (debug & DEBUG_RHIZOME) DEBUGF("missing BK field");
RETURN(1);
}
unsigned char bkBytes[RHIZOME_BUNDLE_KEY_BYTES];
if (fromhexstr(bkBytes, bk, RHIZOME_BUNDLE_KEY_BYTES) == -1)
{ RETURN(WHYF("invalid BK field: %s", bk)); }
int cn = 0, in = 0, kp = 0;
for (; keyring_next_identity(keyring, &cn, &in, &kp); ++kp) {
const unsigned char *authorSid = keyring->contexts[cn]->identities[in]->keypairs[kp]->public_key;
//if (debug & DEBUG_RHIZOME) DEBUGF("identity %s", alloca_tohex(authorSid, SID_SIZE));
int rkp = keyring_identity_find_keytype(keyring, cn, in, KEYTYPE_RHIZOME);
if (rkp != -1) {
switch (rhizome_bk_xor(authorSid, m->cryptoSignPublic, bkBytes, m->cryptoSignSecret)) {
case -1:
RETURN(WHY("rhizome_bk_xor() failed"));
case 0:
if (rhizome_verify_bundle_privatekey(m) == 0)
RETURN(0); // bingo
break;
}
}
}
RETURN(2); // not self signed
}
/* Verify the validity of the manifest's sccret key.
Return 0 if valid, 1 if not. Return -1 if an error occurs.
XXX This is a pretty ugly way to do it, but NaCl offers no API to
do this cleanly.
*/
int rhizome_verify_bundle_privatekey(rhizome_manifest *m)
{
IN();
#ifdef HAVE_CRYPTO_SIGN_NACL_GE25519_H
# include "crypto_sign_edwards25519sha512batch_ref/ge25519.h"
#else
# ifdef HAVE_KLUDGE_NACL_GE25519_H
# include "edwards25519sha512batch/ref/ge25519.h"
# endif
#endif
#ifdef ge25519
unsigned char *sk=m->cryptoSignSecret;
unsigned char pk[crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES];
sc25519 scsk;
ge25519 gepk;
sc25519_from32bytes(&scsk,sk);
ge25519_scalarmult_base(&gepk, &scsk);
ge25519_pack(pk, &gepk);
bzero(&scsk,sizeof(scsk));
if (memcmp(pk, m->cryptoSignPublic, crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES) == 0) {
m->haveSecret = 1;
RETURN(0); // valid
}
m->haveSecret = 0;
if (debug & DEBUG_RHIZOME) {
DEBUGF(" stored public key = %s*", alloca_tohex(m->cryptoSignPublic, 8));
DEBUGF("computed public key = %s*", alloca_tohex(pk, 8));
}
RETURN(1); // invalid
#else //!ge25519
/* XXX Need to test key by signing and testing signature validity. */
/* For the time being barf so that the caller does not think we have a validated BK
when in fact we do not. */
m->haveSecret=0;
RETURN(WHY("ge25519 function not available"));
#endif //!ge25519
}
rhizome_signature *rhizome_sign_hash(rhizome_manifest *m, const unsigned char *authorSid)
{
IN();
unsigned char *hash=m->manifesthash;
unsigned char *publicKeyBytes=m->cryptoSignPublic;
if (!m->haveSecret && rhizome_extract_privatekey(m, authorSid)) {
WHY("Cannot find secret key to sign manifest data.");
RETURN(NULL);
}
/* Signature is formed by running crypto_sign_edwards25519sha512batch() on the
hash of the manifest. The signature actually contains the hash, so to save
space we cut the hash out of the signature. */
unsigned char signatureBuffer[crypto_sign_edwards25519sha512batch_BYTES+crypto_hash_sha512_BYTES];
unsigned long long sigLen=0;
int mLen=crypto_hash_sha512_BYTES;
int r=crypto_sign_edwards25519sha512batch(signatureBuffer,&sigLen,
&hash[0],mLen,m->cryptoSignSecret);
if (r) {
WHY("crypto_sign() failed.");
RETURN(NULL);
}
rhizome_signature *out=calloc(sizeof(rhizome_signature),1);
/* Here we use knowledge of the internal structure of the signature block
to remove the hash, since that is implicitly transported, thus reducing the
actual signature size down to 64 bytes.
We do then need to add the public key of the signatory on. */
bcopy(&signatureBuffer[0],&out->signature[1],32);
bcopy(&signatureBuffer[96],&out->signature[33],32);
bcopy(&publicKeyBytes[0],&out->signature[65],crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES);
out->signatureLength=65+crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES;
out->signature[0]=out->signatureLength;
RETURN(out);
}
typedef struct manifest_signature_block_cache {
unsigned char manifest_hash[crypto_hash_sha512_BYTES];
unsigned char signature_bytes[256];
int signature_length;
int signature_valid;
} manifest_signature_block_cache;
#define SIG_CACHE_SIZE 1024
manifest_signature_block_cache sig_cache[SIG_CACHE_SIZE];
int rhizome_manifest_lookup_signature_validity(unsigned char *hash,unsigned char *sig,int sig_len)
{
IN();
unsigned int slot=0;
int i;
for(i=0;i<crypto_hash_sha512_BYTES;i++) {
slot=(slot<<1)+(slot&0x80000000?1:0);
slot+=hash[i];
}
for(i=0;i<sig_len;i++) {
slot=(slot<<1)+(slot&0x80000000?1:0);
slot+=sig[i];
}
slot%=SIG_CACHE_SIZE;
int replace=0;
if (sig_cache[slot].signature_length!=sig_len) replace=1;
for(i=0;i<crypto_hash_sha512_BYTES;i++)
if (hash[i]!=sig_cache[i].manifest_hash[i]) { replace=1; break; }
for(i=0;i<sig_len;i++)
if (sig[i]!=sig_cache[i].signature_bytes[i]) { replace=1; break; }
if (replace) {
for(i=0;i<crypto_hash_sha512_BYTES;i++)
sig_cache[i].manifest_hash[i]=hash[i];
for(i=0;i<sig_len;i++)
sig_cache[i].signature_bytes[i]=sig[i];
sig_cache[i].signature_length=sig_len;
unsigned char sigBuf[256];
unsigned char verifyBuf[256];
unsigned char publicKey[256];
/* Reconstitute signature by putting manifest hash between the two
32-byte halves */
bcopy(&sig[0],&sigBuf[0],32);
bcopy(hash,&sigBuf[32],crypto_hash_sha512_BYTES);
bcopy(&sig[32],&sigBuf[96],32);
/* Get public key of signatory */
bcopy(&sig[64],&publicKey[0],crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES);
unsigned long long mlen=0;
sig_cache[i].signature_valid=
crypto_sign_edwards25519sha512batch_open(verifyBuf,&mlen,&sigBuf[0],128,
publicKey)
? -1 : 0;
}
RETURN(sig_cache[i].signature_valid);
}
int rhizome_manifest_extract_signature(rhizome_manifest *m,int *ofs)
{
IN();
if (!m) { RETURN(WHY("NULL pointer passed in as manifest")); }
if ((*ofs)>=m->manifest_all_bytes) { RETURN(0); }
int len=m->manifestdata[*ofs];
if (!len) {
(*ofs)=m->manifest_bytes;
m->errors++;
RETURN(WHY("Zero byte signature blocks are not allowed, assuming signature section corrupt."));
}
/* Each signature type is required to have a different length to detect it.
At present only crypto_sign_edwards25519sha512batch() signatures are
supported. */
int r;
if (m->sig_count<MAX_MANIFEST_VARS)
switch(len)
{
case 0x61: /* crypto_sign_edwards25519sha512batch() */
/* Reconstitute signature block */
r=rhizome_manifest_lookup_signature_validity
(m->manifesthash,&m->manifestdata[(*ofs)+1],96);
#ifdef DEPRECATED
unsigned char sigBuf[256];
unsigned char verifyBuf[256];
unsigned char publicKey[256];
bcopy(&m->manifestdata[(*ofs)+1],&sigBuf[0],32);
bcopy(&m->manifesthash[0],&sigBuf[32],crypto_hash_sha512_BYTES);
bcopy(&m->manifestdata[(*ofs)+1+32],&sigBuf[96],32);
/* Get public key of signatory */
bcopy(&m->manifestdata[(*ofs)+1+64],&publicKey[0],crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES);
unsigned long long mlen=0;
int r=crypto_sign_edwards25519sha512batch_open(verifyBuf,&mlen,&sigBuf[0],128, publicKey);
#endif
if (r) {
(*ofs)+=len;
m->errors++;
RETURN(WHY("Error in signature block (verification failed)."));
} else {
/* Signature block passes, so add to list of signatures */
m->signatureTypes[m->sig_count]=len;
m->signatories[m->sig_count]
=malloc(crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES);
if(!m->signatories[m->sig_count]) {
(*ofs)+=len;
RETURN(WHY("malloc() failed when reading signature block"));
}
bcopy(&m->manifestdata[(*ofs)+1+64],m->signatories[m->sig_count],
crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES);
m->sig_count++;
if (debug&DEBUG_RHIZOME) DEBUG("Signature passed.");
}
break;
default:
(*ofs)+=len;
m->errors++;
RETURN(WHY("Encountered illegal or malformed signature block"));
}
else
{
(*ofs)+=len;
WHY("Too many signature blocks in manifest.");
m->errors++;
}
(*ofs)+=len;
RETURN(0);
}