forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
366 lines (319 loc) · 16.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
import sys
import logging
import paddle
import argparse
import functools
import time
import random
import numpy as np
from paddleslim.prune.unstructured_pruner import UnstructuredPruner, GMPUnstructuredPruner
from paddleslim.common import get_logger
sys.path.append(os.path.join(os.path.dirname("__file__"), os.path.pardir))
import models
from utility import add_arguments, print_arguments
import paddle.vision.transforms as T
from paddle.distributed import fleet
from paddle.distributed.fleet import DistributedStrategy
_logger = get_logger(__name__, level=logging.INFO)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('use_gpu', bool, True, "Whether to use gpu for traning or not. Defauly: True")
add_arg('batch_size', int, 64, "Minibatch size. Default: 64")
add_arg('batch_size_for_validation', int, 64, "Minibatch size for validation. Default: 64")
add_arg('model', str, "MobileNet", "The target model.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model. Default: None")
add_arg('checkpoint', str, None, "The model to load for resuming training. Default: None")
add_arg('lr', float, 0.1, "The learning rate used to fine-tune pruned model. Default: 0.1")
add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay strategy. Default: piecewise_decay")
add_arg('l2_decay', float, 3e-5, "The l2_decay parameter. Default: 3e-5")
add_arg('momentum_rate', float, 0.9, "The value of momentum_rate. Default: 0.9")
add_arg('pruning_strategy', str, 'base', "The pruning strategy, currently we support base and gmp. Default: base")
add_arg('threshold', float, 0.01, "The threshold to set zeros, the abs(weights) lower than which will be zeros. Default: 0.01")
add_arg('pruning_mode', str, 'ratio', "the pruning mode: whether by ratio or by threshold. Default: ratio")
add_arg('ratio', float, 0.55, "The ratio to set zeros, the smaller portion will be zeros. Default: 0.55")
add_arg('num_epochs', int, 120, "The number of total epochs. Default: 120")
parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
parser.add_argument('--sparse_block', nargs='+', type=int, default=[1, 1], help="There must be two integers inside this array. The array defines the shape of the block, the values within which are either sparsified to all zeros or kept original. [1, 1] means unstructured pruning. Default: [1, 1]")
add_arg('data', str, "imagenet", "Which data to use. 'mnist', 'cifar10' or 'imagenet'. Default: imagenet")
add_arg('log_period', int, 100, "Log period in batches. Default: 100")
add_arg('test_period', int, 5, "Test period in epoches. Default: 5")
add_arg('model_path', str, "./models", "The path to save model. Default: ./models")
add_arg('model_period', int, 10, "The period to save model in epochs. Default: 10")
add_arg('last_epoch', int, -1, "The last epoch we could train from. Default: -1")
add_arg('stable_epochs', int, 0, "The epoch numbers used to stablize the model before pruning. Default: 0")
add_arg('pruning_epochs', int, 60, "The epoch numbers used to prune the model by a ratio step. Default: 60")
add_arg('tunning_epochs', int, 60, "The epoch numbers used to tune the after-pruned models. Default: 60")
add_arg('pruning_steps', int, 120, "How many times you want to increase your ratio during training. Default: 120")
add_arg('initial_ratio', float, 0.15, "The initial pruning ratio used at the start of pruning stage. Default: 0.15")
add_arg('prune_params_type', str, None, "Which kind of params should be pruned, we only support None (all but norms) and conv1x1_only for now. Default: None")
add_arg('local_sparsity', bool, False, "Whether to prune all the parameter matrix at the same ratio or not. Default: False")
add_arg('ce_test', bool, False, "Whether to CE test. Default: False")
add_arg('num_workers', int, 32, "number of workers when loading dataset. Default: 32")
# yapf: enable
model_list = models.__all__
def piecewise_decay(args, step_per_epoch):
bd = [step_per_epoch * e for e in args.step_epochs]
lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)]
last_iter = (1 + args.last_epoch) * step_per_epoch
learning_rate = paddle.optimizer.lr.PiecewiseDecay(
boundaries=bd, values=lr, last_epoch=last_iter)
optimizer = paddle.optimizer.Momentum(
learning_rate=learning_rate,
momentum=args.momentum_rate,
weight_decay=paddle.regularizer.L2Decay(args.l2_decay))
return optimizer, learning_rate
def cosine_decay(args, step_per_epoch):
last_iter = (1 + args.last_epoch) * step_per_epoch
learning_rate = paddle.optimizer.lr.CosineAnnealingDecay(
learning_rate=args.lr,
T_max=args.num_epochs * step_per_epoch,
last_epoch=last_iter)
optimizer = paddle.optimizer.Momentum(
learning_rate=learning_rate,
momentum=args.momentum_rate,
weight_decay=paddle.regularizer.L2Decay(args.l2_decay))
return optimizer, learning_rate
def create_optimizer(args, step_per_epoch):
if args.lr_strategy == "piecewise_decay":
return piecewise_decay(args, step_per_epoch)
elif args.lr_strategy == "cosine_decay":
return cosine_decay(args, step_per_epoch)
def create_unstructured_pruner(train_program, args, place, configs):
if configs is None:
return UnstructuredPruner(
train_program,
mode=args.pruning_mode,
ratio=args.ratio,
threshold=args.threshold,
prune_params_type=args.prune_params_type,
place=place,
local_sparsity=args.local_sparsity,
sparse_block=args.sparse_block)
else:
return GMPUnstructuredPruner(
train_program,
ratio=args.ratio,
prune_params_type=args.prune_params_type,
place=place,
local_sparsity=args.local_sparsity,
sparse_block=args.sparse_block,
configs=configs)
def compress(args):
shuffle = True
if args.ce_test:
# set seed
seed = 111
paddle.seed(seed)
np.random.seed(seed)
random.seed(seed)
args.num_workers = 0
shuffle = False
env = os.environ
num_trainers = int(env.get('PADDLE_TRAINERS_NUM', 1))
use_data_parallel = num_trainers > 1
if use_data_parallel:
# Fleet step 1: initialize the distributed environment
role = fleet.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
train_reader = None
test_reader = None
if args.data == "mnist":
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = paddle.vision.datasets.MNIST(
mode='train', backend="cv2", transform=transform)
val_dataset = paddle.vision.datasets.MNIST(
mode='test', backend="cv2", transform=transform)
class_dim = 10
image_shape = "1,28,28"
args.pretrained_model = False
elif args.data == "cifar10":
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = paddle.vision.datasets.Cifar10(
mode="train", backend="cv2", transform=transform)
val_dataset = paddle.vision.datasets.Cifar10(
mode="test", backend="cv2", transform=transform)
class_dim = 10
image_shape = "3, 32, 32"
args.pretrained_model = False
elif args.data == "imagenet":
import imagenet_reader as reader
train_dataset = reader.ImageNetDataset(mode='train')
val_dataset = reader.ImageNetDataset(mode='val')
class_dim = 1000
image_shape = "3,224,224"
else:
raise ValueError("{} is not supported.".format(args.data))
image_shape = [int(m) for m in image_shape.split(",")]
assert args.model in model_list, "{} is not in lists: {}".format(args.model,
model_list)
if args.use_gpu:
places = paddle.static.cuda_places()
else:
places = paddle.static.cpu_places()
place = places[0]
exe = paddle.static.Executor(place)
image = paddle.static.data(
name='image', shape=[None] + image_shape, dtype='float32')
label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
batch_size_per_card = args.batch_size
batch_sampler = paddle.io.DistributedBatchSampler(
train_dataset,
batch_size=batch_size_per_card,
shuffle=shuffle,
drop_last=True)
train_loader = paddle.io.DataLoader(
train_dataset,
places=place,
batch_sampler=batch_sampler,
feed_list=[image, label],
return_list=False,
use_shared_memory=True,
num_workers=args.num_workers)
valid_loader = paddle.io.DataLoader(
val_dataset,
places=place,
feed_list=[image, label],
drop_last=False,
return_list=False,
use_shared_memory=True,
batch_size=args.batch_size_for_validation,
shuffle=False)
step_per_epoch = int(
np.ceil(len(train_dataset) * 1. / args.batch_size / num_trainers))
# model definition
model = models.__dict__[args.model]()
out = model.net(input=image, class_dim=class_dim)
if args.data == 'cifar10':
label = paddle.reshape(label, [-1, 1])
cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label)
avg_cost = paddle.mean(x=cost)
acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
val_program = paddle.static.default_main_program().clone(for_test=True)
opt, learning_rate = create_optimizer(args, step_per_epoch)
# Fleet step 2: distributed strategy
if use_data_parallel:
dist_strategy = DistributedStrategy()
dist_strategy.sync_batch_norm = False
dist_strategy.execution_strategy = paddle.static.ExecutionStrategy()
dist_strategy.fuse_all_reduce_ops = False
train_program = paddle.static.default_main_program()
if args.pruning_strategy == 'gmp':
# GMP pruner step 0: define configs for GMP, no need to define configs for the base training.
configs = {
'stable_iterations': args.stable_epochs * step_per_epoch,
'pruning_iterations': args.pruning_epochs * step_per_epoch,
'tunning_iterations': args.tunning_epochs * step_per_epoch,
'resume_iteration': (args.last_epoch + 1) * step_per_epoch,
'pruning_steps': args.pruning_steps,
'initial_ratio': args.initial_ratio,
}
elif args.pruning_strategy == 'base':
configs = None
# GMP pruner step 1: initialize a pruner object by calling entry function.
pruner = create_unstructured_pruner(
train_program, args, place, configs=configs)
if use_data_parallel:
# Fleet step 3: decorate the origial optimizer and minimize it
opt = fleet.distributed_optimizer(opt, strategy=dist_strategy)
opt.minimize(avg_cost, no_grad_set=pruner.no_grad_set)
exe.run(paddle.static.default_startup_program())
if args.last_epoch > -1:
assert args.checkpoint is not None and os.path.exists(
args.checkpoint), "Please specify a valid checkpoint path."
paddle.static.load(train_program, args.checkpoint)
elif args.pretrained_model:
assert os.path.exists(
args.
pretrained_model), "Pretrained model path {} doesn't exist".format(
args.pretrained_model)
def if_exist(var):
return os.path.exists(os.path.join(args.pretrained_model, var.name))
_logger.info("Load pretrained model from {}".format(
args.pretrained_model))
# NOTE: We are using paddle.static.load_vars() because the pretrained model is from an older version which requires this API.
# Please consider using paddle.static.load(program, model_path) when possible
paddle.static.load_vars(exe, args.pretrained_model, predicate=if_exist)
def test(epoch, program):
acc_top1_ns = []
acc_top5_ns = []
_logger.info(
"The current sparsity of the inference model is {}%".format(
round(100 * UnstructuredPruner.total_sparse(
paddle.static.default_main_program()), 2)))
for batch_id, data in enumerate(valid_loader):
start_time = time.time()
acc_top1_n, acc_top5_n = exe.run(
program, feed=data, fetch_list=[acc_top1.name, acc_top5.name])
end_time = time.time()
if batch_id % args.log_period == 0:
_logger.info(
"Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}".
format(epoch, batch_id,
np.mean(acc_top1_n),
np.mean(acc_top5_n), end_time - start_time))
acc_top1_ns.append(np.mean(acc_top1_n))
acc_top5_ns.append(np.mean(acc_top5_n))
_logger.info("Final eval epoch[{}] - acc_top1: {}; acc_top5: {}".format(
epoch,
np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))
def train(epoch, program):
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
reader_start = time.time()
for batch_id, data in enumerate(train_loader):
train_reader_cost += time.time() - reader_start
train_start = time.time()
loss_n, acc_top1_n, acc_top5_n = exe.run(
program,
feed=data,
fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name])
# GMP pruner step 2: step() to update ratios and other internal states of the pruner.
pruner.step()
train_run_cost += time.time() - train_start
total_samples += args.batch_size
loss_n = np.mean(loss_n)
acc_top1_n = np.mean(acc_top1_n)
acc_top5_n = np.mean(acc_top5_n)
if batch_id % args.log_period == 0:
_logger.info(
"epoch[{}]-batch[{}] lr: {:.6f} - loss: {}; acc_top1: {}; acc_top5: {}; avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec".
format(epoch, batch_id,
learning_rate.get_lr(), loss_n, acc_top1_n,
acc_top5_n, train_reader_cost / args.log_period, (
train_reader_cost + train_run_cost
) / args.log_period, total_samples / args.log_period,
total_samples / (train_reader_cost + train_run_cost
)))
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
learning_rate.step()
reader_start = time.time()
compiled_train_program = paddle.static.CompiledProgram(
paddle.static.default_main_program())
for i in range(args.last_epoch + 1, args.num_epochs):
train(i, compiled_train_program)
# GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation.
pruner.update_params()
_logger.info("The current sparsity of the pruned model is: {}%".format(
round(100 * UnstructuredPruner.total_sparse(
paddle.static.default_main_program()), 2)))
if (i + 1) % args.test_period == 0:
test(i, val_program)
if (i + 1) % args.model_period == 0:
if use_data_parallel:
fleet.save_persistables(executor=exe, dirname=args.model_path)
else:
paddle.static.save(paddle.static.default_main_program(),
args.model_path)
def main():
paddle.enable_static()
args = parser.parse_args()
print_arguments(args)
compress(args)
if __name__ == '__main__':
main()