Skip to content

Peachypie98/mnist-lenet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 

Repository files navigation

MNIST & Modified LeNet-5

What Is MNIST and Goal For This Project

  • The MNIST dataset is a large database of handwritten digits that is commonly used for training various image processing systems. It contains 60,000 images of training set and 10,000 images of test set. The handwritten digit images have been size-normalized and centered in a fixed size of 28×28 pixels.
  • I slightly modified LeNet-5 model to train these images and resized the images to 32x32 pixels beforehand. Adam optimizer, Cross Entropy Loss, and batch size of 64 were used for this task.
Material Bread logo

[MNIST Dataset]

LeNet-5 Architecture

[LeNet-5 Architecture]

LeNet-5 is a very efficient convolutional neural network for handwritten character recognition. It is a small network that has 7 layers and contains basic modules of deep learning: convolutional layer, pooling layer and fully connected layer. Moreover, LeNet-5 uses average pooling and tanh activation function. However, in this project I will use max-pooling and ReLU activation function. The rest of the configurations are similar to base one.

Modified LeNet-5 Architecture Code

class LeNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.network = nn.Sequential(
            nn.Conv2d(in_channels = 1, out_channels = 6, kernel_size = 5),
            nn.ReLU(),
            nn.MaxPool2d(2, stride = 2),
            
            nn.Conv2d(in_channels = 6, out_channels = 16, kernel_size = 5),
            nn.ReLU(),
            nn.MaxPool2d(2, stride = 2),
            
            nn.Conv2d(in_channels = 16, out_channels = 120, kernel_size = 5),
            nn.ReLU(),
            
            nn.Flatten(),
            
            nn.Linear(120, 84),
            nn.ReLU(),
            
            nn.Linear(84,10))
    
    def forward(self, x):
        x = self.network(x)
        return F.softmax(x, dim=1)  

LeNet-5 Parameters

How to calculate parameters for each layer

Recall that there are no trainable parameters in max-pooling layers and ReLU activation functions

  • Conv2d (2-1): ((5x5x1)+1) x 6 = 156
  • Conv2d (2-4): ((5x5x6)+1) x 16 = 2416
  • Conv2d (2-7): ((5x5x16)+1) x 120 = 48120
  • Linear (2-10): (120+1) x 84 = 10164
  • Linear (2-12): (84+1) x 10 = 850

Graphs

As we can see, we can get very high accuracy in just few epochs.

Demo

Download the MNIST-LeNet-5.ipynb file I provided to you and try run it using jupyter notebook

About

Training MNIST Dataset Using Modified LeNet Model

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published