forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer.h
118 lines (98 loc) · 3.11 KB
/
layer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#ifndef NCNN_LAYER_H
#define NCNN_LAYER_H
#include <stdio.h>
#include <string>
#include <vector>
#include "mat.h"
#include "modelbin.h"
#include "paramdict.h"
#include "platform.h"
namespace ncnn {
class Allocator;
class Option
{
public:
Option();
public:
bool lightmode;
int num_threads;
Allocator* blob_allocator;
Allocator* workspace_allocator;
};
const Option& get_default_option();
int set_default_option(const Option& opt);
class Layer
{
public:
// empty
Layer();
// virtual destructor
virtual ~Layer();
// load layer specific parameter from parsed dict
// return 0 if success
virtual int load_param(const ParamDict& pd);
// load layer specific weight data from model binary
// return 0 if success
virtual int load_model(const ModelBin& mb);
public:
// one input and one output blob
bool one_blob_only;
// support inplace inference
bool support_inplace;
public:
// implement inference
// return 0 if success
virtual int forward(const std::vector<Mat>& bottom_blobs, std::vector<Mat>& top_blobs, const Option& opt = get_default_option()) const;
virtual int forward(const Mat& bottom_blob, Mat& top_blob, const Option& opt = get_default_option()) const;
// implement inplace inference
// return 0 if success
virtual int forward_inplace(std::vector<Mat>& bottom_top_blobs, const Option& opt = get_default_option()) const;
virtual int forward_inplace(Mat& bottom_top_blob, const Option& opt = get_default_option()) const;
public:
#if NCNN_STRING
// layer type name
std::string type;
// layer name
std::string name;
#endif // NCNN_STRING
// blob index which this layer needs as input
std::vector<int> bottoms;
// blob index which this layer produces as output
std::vector<int> tops;
};
// layer factory function
typedef Layer* (*layer_creator_func)();
struct layer_registry_entry
{
#if NCNN_STRING
// layer type name
const char* name;
#endif // NCNN_STRING
// layer factory entry
layer_creator_func creator;
};
#if NCNN_STRING
// get layer type from type name
int layer_to_index(const char* type);
// create layer from type name
Layer* create_layer(const char* type);
#endif // NCNN_STRING
// create layer from layer type
Layer* create_layer(int index);
#define DEFINE_LAYER_CREATOR(name) \
::ncnn::Layer* name##_layer_creator() { return new name; }
} // namespace ncnn
#endif // NCNN_LAYER_H