-
Notifications
You must be signed in to change notification settings - Fork 64
/
main.py
593 lines (506 loc) · 21.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
from PyQt5 import Qt
from PyQt5 import QtCore,QtWidgets,QtGui
import sys
import PyQt5
from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QFileDialog, QGraphicsRectItem, QGraphicsScene
from PyQt5.QtGui import QPixmap, QImage
from PyQt5.QtCore import QSize
import cv2
import numpy as np
from matplotlib import pyplot as plt
import window
import window2
class MainWindow():
def __init__(self):
app = QtWidgets.QApplication(sys.argv)
MainWindow = QtWidgets.QMainWindow()
self.raw_image = None
self.ui = window.Ui_MainWindow()
self.ui.setupUi(MainWindow)
self.action_connect()
MainWindow.show()
sys.exit(app.exec_())
# 信号槽绑定
def action_connect(self):
self.ui.action.triggered.connect(self.open_file)
self.ui.action_2.triggered.connect(self.save_file)
self.ui.action_5.triggered.connect(self.recover_img)
# 饱和度
self.ui.horizontalSlider.valueChanged.connect(self.slider_change)
self.ui.horizontalSlider.sliderReleased.connect(self.show_histogram)
# 亮度
self.ui.horizontalSlider_4.valueChanged.connect(self.slider_change)
self.ui.horizontalSlider_4.sliderReleased.connect(self.show_histogram)
# 美白(人脸识别)
self.ui.horizontalSlider_8.sliderReleased.connect(self.slider_change)
self.ui.horizontalSlider_8.sliderReleased.connect(self.show_histogram)
# 美白(皮肤识别)
self.ui.horizontalSlider_13.sliderReleased.connect(self.slider_change)
self.ui.horizontalSlider_13.sliderReleased.connect(self.show_histogram)
# 磨皮精度
self.ui.horizontalSlider_14.sliderReleased.connect(self.slider_change)
self.ui.horizontalSlider_14.sliderReleased.connect(self.show_histogram)
# 磨皮程度
self.ui.horizontalSlider_11.sliderReleased.connect(self.slider_change)
self.ui.horizontalSlider_11.sliderReleased.connect(self.show_histogram)
# 伽马变换
self.ui.horizontalSlider_5.sliderReleased.connect(self.slider_change)
self.ui.horizontalSlider_5.sliderReleased.connect(self.show_histogram)
# 人脸识别和皮肤检测
self.ui.tabWidget.tabBarClicked.connect(self.calculate)
# 木刻滤镜
self.ui.horizontalSlider_9.sliderReleased.connect(self.woodcut)
self.ui.horizontalSlider_9.sliderReleased.connect(self.show_histogram)
# 灰色铅笔画
self.ui.horizontalSlider_7.sliderReleased.connect(self.pencil_gray)
self.ui.horizontalSlider_7.sliderReleased.connect(self.show_histogram)
# 怀旧滤镜
self.ui.horizontalSlider_10.sliderReleased.connect(self.reminiscene)
self.ui.horizontalSlider_10.sliderReleased.connect(self.show_histogram)
# 铅笔画滤镜
self.ui.horizontalSlider_12.sliderReleased.connect(self.slider_change)
self.ui.horizontalSlider_12.sliderReleased.connect(self.show_histogram)
# 风格化
self.ui.horizontalSlider_2.sliderReleased.connect(self.slider_change)
self.ui.horizontalSlider_2.sliderReleased.connect(self.show_histogram)
# 细节增强
self.ui.horizontalSlider_6.sliderReleased.connect(self.slider_change)
self.ui.horizontalSlider_6.sliderReleased.connect(self.show_histogram)
# 边缘保持
self.ui.horizontalSlider_3.sliderReleased.connect(self.slider_change)
self.ui.horizontalSlider_3.sliderReleased.connect(self.show_histogram)
# 打开摄像头
self.ui.action_17.triggered.connect(self.new_camera)
# 标记人脸位置
self.ui.action_18.triggered.connect(self.mark_face)
# 显示图片
def show_image(self):
img_cv = cv2.cvtColor(self.current_img, cv2.COLOR_RGB2BGR)
img_width, img_height, a = img_cv.shape
ratio_img = img_width/img_height
ratio_scene = self.ui.graphicsView.width()/self.ui.graphicsView.height()
if ratio_img > ratio_scene:
width = int(self.ui.graphicsView.width())
height = int(self.ui.graphicsView.width() / ratio_img)
else:
width = int(self.ui.graphicsView.height() * ratio_img)
height = int(self.ui.graphicsView.height())
img_resize = cv2.resize(img_cv, (height-5, width-5), interpolation=cv2.INTER_AREA)
h, w, c = img_resize.shape
bytesPerLine = w * 3
qimg = QImage(img_resize.data, w, h, bytesPerLine, QImage.Format_RGB888)
self.scene = QGraphicsScene()
pix = QPixmap(qimg)
self.scene.addPixmap(pix)
self.ui.graphicsView.setScene(self.scene)
# 显示灰度图像
def show_grayimage(self):
img_cv = self.gray_image
img_width, img_height = img_cv.shape
ratio_img = img_width/img_height
ratio_scene = self.ui.graphicsView.width()/self.ui.graphicsView.height()
if ratio_img > ratio_scene:
width = int(self.ui.graphicsView.width())
height = int(self.ui.graphicsView.width() / ratio_img)
else:
width = int(self.ui.graphicsView.height() * ratio_img)
height = int(self.ui.graphicsView.height())
img_resize = cv2.resize(img_cv, (height-5, width-5), interpolation=cv2.INTER_AREA)
h, w = img_resize.shape
qimg = QImage(img_resize.data, w, h, w, QImage.Format_Grayscale8)
self.scene = QGraphicsScene()
pix = QPixmap(qimg)
self.scene.addPixmap(pix)
self.ui.graphicsView.setScene(self.scene)
# 显示直方图
def show_histogram(self):
if self.raw_image is None:
return 0
img = self.current_img
plt.figure(figsize=((self.ui.tab_3.width()-10)/100, (self.ui.tab_3.width()-60)/100), frameon=False)
plt.hist(img.ravel(), bins=256, range=[0, 256])
plt.axes().get_yaxis().set_visible(False)
# plt.axes().get_xaxis().set_visible(False)
ax = plt.axes()
# 隐藏坐标系的外围框线
for spine in ax.spines.values():
spine.set_visible(False)
plt.savefig('Hist.png', bbox_inches="tight", transparent=True, dpi=100)
pix = QPixmap("Hist.png")
self.ui.label.setPixmap(pix)
self.ui.label_2.setPixmap(pix)
self.ui.label_3.setPixmap(pix)
# 保存图片
def save_file(self):
fname = QFileDialog.getSaveFileName(None, '打开文件', './', ("Images (*.png *.xpm *.jpg)"))
if fname[0]:
cv2.imwrite(fname[0], self.current_img)
# 打开图片
def open_file(self):
fname = QFileDialog.getOpenFileName(None, '打开文件', './', ("Images (*.png *.xpm *.jpg)"))
if fname[0]:
img_cv = cv2.imdecode(np.fromfile(fname[0], dtype=np.uint8), -1) # 注意这里读取的是RGB空间的
self.raw_image = img_cv
self.last_image = img_cv
self.current_img = img_cv
self.show_image()
self.show_histogram()
self.imgskin = np.zeros(self.raw_image.shape)
self.intial_value()
# 恢复图片
def recover_img(self):
self.current_img = self.raw_image
self.show_image()
self.show_histogram()
self.intial_value()
# 饱和度
def change_saturation(self):
if self.raw_image is None:
return 0
value = self.ui.horizontalSlider.value()
img_hsv = cv2.cvtColor(self.current_img, cv2.COLOR_BGR2HLS)
if value > 2:
img_hsv[:, :, 2] = np.log(img_hsv[:, :, 2] /255* (value - 1)+1) / np.log(value + 1) * 255
if value < 0:
img_hsv[:, :, 2] = np.uint8(img_hsv[:, :, 2] / np.log(- value + np.e))
self.current_img = cv2.cvtColor(img_hsv, cv2.COLOR_HLS2BGR)
# 明度调节
def change_darker(self):
if self.raw_image is None:
return 0
value = self.ui.horizontalSlider_4.value()
img_hsv = cv2.cvtColor(self.current_img, cv2.COLOR_BGR2HLS)
if value > 3:
img_hsv[:, :, 1] = np.log(img_hsv[:, :, 1] /255* (value - 1)+1) / np.log(value + 1) * 255
if value < 0:
img_hsv[:, :, 1] = np.uint8(img_hsv[:, :, 1] / np.log(- value + np.e))
self.last_image = self.current_img
self.current_img = cv2.cvtColor(img_hsv, cv2.COLOR_HLS2BGR)
# 人脸识别
def detect_face(self):
img = self.raw_image
face_cascade = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
return faces
# 皮肤识别
def detect_skin(self):
img = self.raw_image
rows, cols, channals = img.shape
for r in range(rows):
for c in range(cols):
B = img.item(r, c, 0)
G = img.item(r, c, 1)
R = img.item(r, c, 2)
if (abs(R - G) > 15) and (R > G) and (R > B):
if (R > 95) and (G > 40) and (B > 20) and (max(R, G, B) - min(R, G, B) > 15):
self.imgskin[r, c] = (1, 1, 1)
elif (R > 220) and (G > 210) and (B > 170):
self.imgskin[r, c] = (1, 1, 1)
# 皮肤磨皮(value1精细度,value2程度)
def dermabrasion(self, value1=3, value2=2):
value1 = self.ui.horizontalSlider_14.value()
value2 = 11 - self.ui.horizontalSlider_11.value()
if value1 == 0 and value2 == 0:
return 0
if value2 == 0:
value2 = 2
if value1 == 0:
value1 = 3
img = self.current_img
dx = value1 * 5
fc = value1 * 12.5
p = 50
temp1 = cv2.bilateralFilter(img, dx, fc, fc)
temp2 = (temp1 - img + 128)
temp3 = cv2.GaussianBlur(temp2, (2 * value2 - 1, 2 * value2 - 1), 0, 0)
temp4 = img + 2 * temp3 - 255
dst = np.uint8(img * ((100 - p) / 100) + temp4 * (p / 100))
imgskin_c = np.uint8(-(self.imgskin - 1))
dst = np.uint8(dst * self.imgskin + img * imgskin_c)
self.current_img = dst
# 美白算法(皮肤识别)
def whitening_skin(self, value=30):
# value = 30
value = self.ui.horizontalSlider_13.value()
img = self.current_img
imgw = np.zeros(img.shape, dtype='uint8')
imgw = img.copy()
midtones_add = np.zeros(256)
for i in range(256):
midtones_add[i] = 0.667 * (1 - ((i - 127.0) / 127) * ((i - 127.0) / 127))
lookup = np.zeros(256, dtype="uint8")
for i in range(256):
red = i
red += np.uint8(value * midtones_add[red])
red = max(0, min(0xff, red))
lookup[i] = np.uint8(red)
rows, cols, channals = img.shape
for r in range(rows):
for c in range(cols):
if self.imgskin[r, c, 0] == 1:
imgw[r, c, 0] = lookup[imgw[r, c, 0]]
imgw[r, c, 1] = lookup[imgw[r, c, 1]]
imgw[r, c, 2] = lookup[imgw[r, c, 2]]
self.current_img = imgw
# 美白算法(人脸识别)
def whitening_face(self, value=30):
# value = 30
value = self.ui.horizontalSlider_8.value()
img = self.current_img
imgw = np.zeros(img.shape, dtype='uint8')
imgw = img.copy()
midtones_add = np.zeros(256)
for i in range(256):
midtones_add[i] = 0.667 * (1 - ((i - 127.0) / 127) * ((i - 127.0) / 127))
lookup = np.zeros(256, dtype="uint8")
for i in range(256):
red = i
red += np.uint8(value * midtones_add[red])
red = max(0, min(0xff, red))
lookup[i] = np.uint8(red)
# faces可全局变量
faces = self.faces
if faces == ():
rows, cols, channals = img.shape
for r in range(rows):
for c in range(cols):
imgw[r, c, 0] = lookup[imgw[r, c, 0]]
imgw[r, c, 1] = lookup[imgw[r, c, 1]]
imgw[r, c, 2] = lookup[imgw[r, c, 2]]
else:
x, y, w, h = faces[0]
rows, cols, channals = img.shape
x = max(x - (w * np.sqrt(2) - w) / 2, 0)
y = max(y - (h * np.sqrt(2) - h) / 2, 0)
w = w * np.sqrt(2)
h = h * np.sqrt(2)
rows = min(rows, y + h)
cols = min(cols, x + w)
for r in range(int(y), int(rows)):
for c in range(int(x), int(cols)):
imgw[r, c, 0] = lookup[imgw[r, c, 0]]
imgw[r, c, 1] = lookup[imgw[r, c, 1]]
imgw[r, c, 2] = lookup[imgw[r, c, 2]]
processWidth = int(max(min(rows - y, cols - 1) / 8, 2))
for i in range(1, processWidth):
alpha = (i - 1) / processWidth
for r in range(int(y), int(rows)):
imgw[r, int(x) + i - 1] = np.uint8(
imgw[r, int(x) + i - 1] * alpha + img[r, int(x) + i - 1] * (1 - alpha))
imgw[r, int(cols) - i] = np.uint8(
imgw[r, int(cols) - i] * alpha + img[r, int(cols) - i] * (1 - alpha))
for c in range(int(x) + processWidth, int(cols) - processWidth):
imgw[int(y) + i - 1, c] = np.uint8(
imgw[int(y) + i - 1, c] * alpha + img[int(y) + i - 1, c] * (1 - alpha))
imgw[int(rows) - i, c] = np.uint8(
imgw[int(rows) - i, c] * alpha + img[int(rows) - i, c] * (1 - alpha))
self.current_img = imgw
# Gamma矫正
def gamma_trans(self):
gamma = (self.ui.horizontalSlider_5.value() + 10) / 10
img = self.current_img
gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]
gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)
self.current_img = cv2.LUT(img, gamma_table)
self.show_image()
self.show_histogram()
# 响应滑动条的变化
def slider_change(self):
if self.raw_image is None:
return 0
self.current_img = self.raw_image
# 伽马变换
if self.ui.horizontalSlider_5.value() != 0:
self.gamma_trans()
# 饱和度
if self.ui.horizontalSlider.value() != 0:
self.change_saturation()
if self.ui.horizontalSlider_2.value() != 0:
pass
# 边缘保持
if self.ui.horizontalSlider_3.value() != 0:
self.edge_preserve()
# 亮度
if self.ui.horizontalSlider_4.value() != 0:
self.change_darker()
# 美白(人脸识别)
if self.ui.horizontalSlider_8.value() != 0:
self.whitening_face()
# 美白(皮肤识别)
if self.ui.horizontalSlider_13.value() != 0:
self.whitening_skin()
# 磨皮程度
if self.ui.horizontalSlider_11.value() != 0:
self.dermabrasion()
# 磨皮精度
if self.ui.horizontalSlider_14.value() != 0:
self.dermabrasion()
# 风格化
if self.ui.horizontalSlider_2.value() != 0:
self.stylize()
# 细节增强
if self.ui.horizontalSlider_6.value() != 0:
self.detail_enhance()
# 铅笔画
if self.ui.horizontalSlider_12.value() != 0:
self.pencil_color()
self.show_image()
# 计算人脸识别和皮肤识别的基本参数
def calculate(self):
if self.raw_image is None:
return 0
if self.calculated is False:
self.faces = self.detect_face()
if self.faces != ():
self.detect_skin()
self.calculated = True
# 怀旧滤镜
def reminiscene(self):
if self.raw_image is None:
return 0
if self.ui.horizontalSlider_10.value() == 0:
self.current_img = self.raw_image
self.show_image()
return 0
img = self.raw_image.copy()
rows, cols, channals = img.shape
for r in range(rows):
for c in range(cols):
B = img.item(r, c, 0)
G = img.item(r, c, 1)
R = img.item(r, c, 2)
img[r, c, 0] = np.uint8(min(max(0.272 * R + 0.534 * G + 0.131 * B, 0), 255))
img[r, c, 1] = np.uint8(min(max(0.349 * R + 0.686 * G + 0.168 * B, 0), 255))
img[r, c, 2] = np.uint8(min(max(0.393 * R + 0.769 * G + 0.189 * B, 0), 255))
self.current_img = img
self.show_image()
# 木刻滤镜
def woodcut(self):
if self.raw_image is None:
return 0
if self.ui.horizontalSlider_9.value() == 0:
# self.current_img = self.raw_image
self.show_image()
return 0
self.gray_image = cv2.cvtColor(self.raw_image, cv2.COLOR_BGR2GRAY)
gray = self.gray_image
value = 70 + self.ui.horizontalSlider_9.value()
rows, cols = gray.shape
for r in range(rows):
for c in range(cols):
if gray[r, c] > value:
gray[r, c] = 255
else:
gray[r, c] = 0
self.gray_image = gray
self.show_grayimage()
# 铅笔画(灰度)
def pencil_gray(self):
if self.raw_image is None:
return 0
if self.ui.horizontalSlider_7.value() == 0:
# self.current_img = self.raw_image
self.show_image()
return 0
value = self.ui.horizontalSlider_7.value() * 0.05
dst1_gray, dst1_color = cv2.pencilSketch(self.current_img, sigma_s=50, sigma_r=value, shade_factor=0.04)
self.gray_image = dst1_gray
self.show_grayimage()
# 铅笔画(彩色)
def pencil_color(self):
if self.raw_image is None:
return 0
if self.ui.horizontalSlider_12.value() == 0:
self.current_img = self.raw_image
self.show_image()
return 0
value = self.ui.horizontalSlider_12.value() * 0.05
dst1_gray, dst1_color = cv2.pencilSketch(self.current_img, sigma_s=50, sigma_r=value, shade_factor=0.04)
self.current_img = dst1_color
# 风格化
def stylize(self):
if self.raw_image is None:
return 0
if self.ui.horizontalSlider_2.value() == 0:
self.current_img = self.raw_image
self.show_image()
return 0
value = self.ui.horizontalSlider_2.value() * 0.05
self.current_img = cv2.stylization(self.current_img, sigma_s=50, sigma_r=value)
# 细节增强
def detail_enhance(self):
if self.raw_image is None:
return 0
if self.ui.horizontalSlider_6.value() == 0:
self.current_img = self.raw_image
self.show_image()
return 0
value = self.ui.horizontalSlider_6.value() * 0.05
self.current_img = cv2.detailEnhance(self.current_img, sigma_s=50, sigma_r=value)
# 边缘保持
def edge_preserve(self):
if self.raw_image is None:
return 0
if self.ui.horizontalSlider_3.value() == 0:
self.current_img = self.raw_image
self.show_image()
return 0
value = self.ui.horizontalSlider_3.value() * 0.05
self.current_img = cv2.edgePreservingFilter(self.current_img, flags=1, sigma_s=50, sigma_r=value)
# 显示摄像照片
def show_camera(self):
flag, self.camera_image = self.cap.read()
show = cv2.resize(self.image, (640, 480))
show = cv2.cvtColor(show, cv2.COLOR_BGR2RGB)
showImage = QtGui.QImage(show.data, show.shape[1], show.shape[0], QtGui.QImage.Format_RGB888)
self.label_show_camera.setPixmap(QtGui.QPixmap.fromImage(showImage))
# 初始化
def intial_value(self):
self.calculated = False
self.ui.horizontalSlider.setValue(0)
self.ui.horizontalSlider_2.setValue(0)
self.ui.horizontalSlider_3.setValue(0)
self.ui.horizontalSlider_4.setValue(0)
self.ui.horizontalSlider_5.setValue(0)
self.ui.horizontalSlider_6.setValue(0)
self.ui.horizontalSlider_7.setValue(0)
self.ui.horizontalSlider_8.setValue(0)
self.ui.horizontalSlider_9.setValue(0)
self.ui.horizontalSlider_10.setValue(0)
self.ui.horizontalSlider_11.setValue(0)
self.ui.horizontalSlider_12.setValue(0)
self.ui.horizontalSlider_13.setValue(0)
self.ui.horizontalSlider_14.setValue(0)
# 调用摄像头窗口
def new_camera(self):
Dialog = QtWidgets.QDialog()
self.ui_2 = window2.Ui_Form()
self.ui_2.setupUi(Dialog)
Dialog.show()
self.ui_2.pushButton_2.clicked.connect(self.get_image)
Dialog.exec_()
if self.ui_2.cap.isOpened():
self.ui_2.cap.release()
if self.ui_2.timer_camera.isActive():
self.ui_2.timer_camera.stop()
# 获取摄像头的图片
def get_image(self):
if self.ui_2.captured_image is not None:
self.raw_image = self.ui_2.captured_image
self.current_img = self.ui_2.captured_image
self.show_image()
self.show_histogram()
self.imgskin = np.zeros(self.raw_image.shape)
self.intial_value()
# 显示人脸识别
def mark_face(self):
if self.raw_image is None:
return 0
if self.calculated == False:
self.calculate()
for (x, y, w, h) in self.faces:
self.current_img = cv2.rectangle(self.current_img.copy(), (x, y), (x+w, y+h), (255, 0, 0), 1)
self.show_image()
if __name__ == "__main__":
MainWindow()