forked from svg/svgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_transforms.js
314 lines (265 loc) · 10.1 KB
/
_transforms.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
'use strict';
var regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/,
regTransformSplit = /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/,
regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;
/**
* Convert transform string to JS representation.
*
* @param {String} transformString input string
* @param {Object} params plugin params
* @return {Array} output array
*/
exports.transform2js = function(transformString) {
// JS representation of the transform data
var transforms = [],
// current transform context
current;
// split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']
transformString.split(regTransformSplit).forEach(function(item) {
/*jshint -W084 */
var num;
if (item) {
// if item is a translate function
if (regTransformTypes.test(item)) {
// then collect it and change current context
transforms.push(current = { name: item });
// else if item is data
} else {
// then split it into [10, 50] and collect as context.data
while (num = regNumericValues.exec(item)) {
num = Number(num);
if (current.data)
current.data.push(num);
else
current.data = [num];
}
}
}
});
return transforms;
};
/**
* Multiply transforms into one.
*
* @param {Array} input transforms array
* @return {Array} output matrix array
*/
exports.transformsMultiply = function(transforms) {
// convert transforms objects to the matrices
transforms = transforms.map(function(transform) {
if (transform.name === 'matrix') {
return transform.data;
}
return transformToMatrix(transform);
});
// multiply all matrices into one
transforms = {
name: 'matrix',
data: transforms.reduce(function(a, b) {
return multiplyTransformMatrices(a, b);
})
};
return transforms;
};
/**
* Do math like a schoolgirl.
*
* @type {Object}
*/
var mth = exports.mth = {
rad: function(deg) {
return deg * Math.PI / 180;
},
deg: function(rad) {
return rad * 180 / Math.PI;
},
cos: function(deg) {
return Math.cos(this.rad(deg));
},
acos: function(val, floatPrecision) {
return +(this.deg(Math.acos(val)).toFixed(floatPrecision));
},
sin: function(deg) {
return Math.sin(this.rad(deg));
},
asin: function(val, floatPrecision) {
return +(this.deg(Math.asin(val)).toFixed(floatPrecision));
},
tan: function(deg) {
return Math.tan(this.rad(deg));
},
atan: function(val, floatPrecision) {
return +(this.deg(Math.atan(val)).toFixed(floatPrecision));
}
};
/**
* Decompose matrix into simple transforms. See
* http://www.maths-informatique-jeux.com/blog/frederic/?post/2013/12/01/Decomposition-of-2D-transform-matrices
*
* @param {Object} data matrix transform object
* @return {Object|Array} transforms array or original transform object
*/
exports.matrixToTransform = function(transform, params) {
var floatPrecision = params.floatPrecision,
data = transform.data,
transforms = [],
sx = +Math.sqrt(data[0] * data[0] + data[1] * data[1]).toFixed(params.transformPrecision),
sy = +((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(params.transformPrecision),
colsSum = data[0] * data[2] + data[1] * data[3],
rowsSum = data[0] * data[1] + data[2] * data[3],
scaleBefore = rowsSum || +(sx == sy);
// [..., ..., ..., ..., tx, ty] → translate(tx, ty)
if (data[4] || data[5]) {
transforms.push({ name: 'translate', data: data.slice(4, data[5] ? 6 : 5) });
}
// [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy)
if (!data[1] && data[2]) {
transforms.push({ name: 'skewX', data: [mth.atan(data[2] / sy, floatPrecision)] });
// [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy)
} else if (data[1] && !data[2]) {
transforms.push({ name: 'skewY', data: [mth.atan(data[1] / data[0], floatPrecision)] });
sx = data[0];
sy = data[3];
// [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or
// [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore)
} else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) {
if (!scaleBefore) {
sx = (data[0] < 0 ? -1 : 1) * Math.sqrt(data[0] * data[0] + data[2] * data[2]);
sy = (data[3] < 0 ? -1 : 1) * Math.sqrt(data[1] * data[1] + data[3] * data[3]);
transforms.push({ name: 'scale', data: [sx, sy] });
}
var rotate = [mth.acos(data[0] / sx, floatPrecision) * (data[1] * sy < 0 ? -1 : 1)];
if (rotate[0]) transforms.push({ name: 'rotate', data: rotate });
if (rowsSum && colsSum) transforms.push({
name: 'skewX',
data: [mth.atan(colsSum / (sx * sx), floatPrecision)]
});
// rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point)
if (rotate[0] && (data[4] || data[5])) {
transforms.shift();
var cos = data[0] / sx,
sin = data[1] / (scaleBefore ? sx : sy),
x = data[4] * (scaleBefore || sy),
y = data[5] * (scaleBefore || sx),
denom = (Math.pow(1 - cos, 2) + Math.pow(sin, 2)) * (scaleBefore || sx * sy);
rotate.push(((1 - cos) * x - sin * y) / denom);
rotate.push(((1 - cos) * y + sin * x) / denom);
}
// Too many transformations, return original matrix if it isn't just a scale/translate
} else if (data[1] || data[2]) {
return transform;
}
if (scaleBefore && (sx != 1 || sy != 1) || !transforms.length) transforms.push({
name: 'scale',
data: sx == sy ? [sx] : [sx, sy]
});
return transforms;
};
/**
* Convert transform to the matrix data.
*
* @param {Object} transform transform object
* @return {Array} matrix data
*/
function transformToMatrix(transform) {
if (transform.name === 'matrix') return transform.data;
var matrix;
switch (transform.name) {
case 'translate':
// [1, 0, 0, 1, tx, ty]
matrix = [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];
break;
case 'scale':
// [sx, 0, 0, sy, 0, 0]
matrix = [transform.data[0], 0, 0, transform.data[1] || transform.data[0], 0, 0];
break;
case 'rotate':
// [cos(a), sin(a), -sin(a), cos(a), x, y]
var cos = mth.cos(transform.data[0]),
sin = mth.sin(transform.data[0]),
cx = transform.data[1] || 0,
cy = transform.data[2] || 0;
matrix = [cos, sin, -sin, cos, (1 - cos) * cx + sin * cy, (1 - cos) * cy - sin * cx];
break;
case 'skewX':
// [1, 0, tan(a), 1, 0, 0]
matrix = [1, 0, mth.tan(transform.data[0]), 1, 0, 0];
break;
case 'skewY':
// [1, tan(a), 0, 1, 0, 0]
matrix = [1, mth.tan(transform.data[0]), 0, 1, 0, 0];
break;
}
return matrix;
}
/**
* Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it
* by the transformation matrix and use a singular value decomposition to represent in a form
* rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ.
* SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}})
*
* @param {Array} arc [a, b, rotation in deg]
* @param {Array} transform transformation matrix
* @return {Array} arc transformed input arc
*/
exports.transformArc = function(arc, transform) {
var a = arc[0],
b = arc[1],
rot = arc[2] * Math.PI / 180,
cos = Math.cos(rot),
sin = Math.sin(rot),
h = Math.pow(arc[5] * cos + arc[6] * sin, 2) / (4 * a * a) +
Math.pow(arc[6] * cos - arc[5] * sin, 2) / (4 * b * b);
if (h > 1) {
h = Math.sqrt(h);
a *= h;
b *= h;
}
var ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0],
m = multiplyTransformMatrices(transform, ellipse),
// Decompose the new ellipse matrix
lastCol = m[2] * m[2] + m[3] * m[3],
squareSum = m[0] * m[0] + m[1] * m[1] + lastCol,
root = Math.sqrt(
(Math.pow(m[0] - m[3], 2) + Math.pow(m[1] + m[2], 2)) *
(Math.pow(m[0] + m[3], 2) + Math.pow(m[1] - m[2], 2))
);
if (!root) { // circle
arc[0] = arc[1] = Math.sqrt(squareSum / 2);
arc[2] = 0;
} else {
var majorAxisSqr = (squareSum + root) / 2,
minorAxisSqr = (squareSum - root) / 2,
major = Math.abs(majorAxisSqr - lastCol) > 1e-6,
sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol,
rowsSum = m[0] * m[2] + m[1] * m[3],
term1 = m[0] * sub + m[2] * rowsSum,
term2 = m[1] * sub + m[3] * rowsSum;
arc[0] = Math.sqrt(majorAxisSqr);
arc[1] = Math.sqrt(minorAxisSqr);
arc[2] = ((major ? term2 < 0 : term1 > 0) ? -1 : 1) *
Math.acos((major ? term1 : term2) / Math.sqrt(term1 * term1 + term2 * term2)) * 180 / Math.PI;
}
if ((transform[0] < 0) !== (transform[3] < 0)) {
// Flip the sweep flag if coordinates are being flipped horizontally XOR vertically
arc[4] = 1 - arc[4];
}
return arc;
};
/**
* Multiply transformation matrices.
*
* @param {Array} a matrix A data
* @param {Array} b matrix B data
* @return {Array} result
*/
function multiplyTransformMatrices(a, b) {
return [
a[0] * b[0] + a[2] * b[1],
a[1] * b[0] + a[3] * b[1],
a[0] * b[2] + a[2] * b[3],
a[1] * b[2] + a[3] * b[3],
a[0] * b[4] + a[2] * b[5] + a[4],
a[1] * b[4] + a[3] * b[5] + a[5]
];
}