forked from snrazavi/Machine-Learning-in-Python-Workshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
284 lines (214 loc) · 7.95 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import numpy as np
def affine_forward(x, W, b):
"""
A linear mapping from inputs to scores.
Inputs:
- x: input matrix (N, d_1, ..., d_k)
- W: weigh matrix (D, C)
- b: bias vector (C, )
Outputs:
- out: output of linear layer (N, C)
"""
x2d = np.reshape(x, (x.shape[0], -1)) # convert 4D input matrix to 2D
out = np.dot(x2d, W) + b # linear transformation
cache = (x, W, b) # keep for backward step (stay with us)
return out, cache
def affine_backward(dout, cache):
"""
Computes the backward pass for an affine layer.
Inputs:
- dout: Upstream derivative, of shape (N, C)
- cache: Tuple of:
- x: Input data, of shape (N, d_1, ... d_k)
- w: Weights, of shape (D, C)
- b: biases, of shape (C,)
Outputs:
- dx: Gradient with respect to x, of shape (N, d1, ..., d_k)
- dw: Gradient with respect to w, of shape (D, C)
- db: Gradient with respect to b, of shape (C,)
"""
x, w, b = cache
x2d = np.reshape(x, (x.shape[0], -1))
# compute gradients
db = np.sum(dout, axis=0)
dw = np.dot(x2d.T, dout)
dx = np.dot(dout, w.T)
# reshape dx to match the size of x
dx = dx.reshape(x.shape)
return dx, dw, db
def relu_forward(x):
"""Forward pass for a layer of rectified linear units.
Inputs:
- x: a numpy array of any shape
Outputs:
- out: output of relu, same shape as x
- cache: x
"""
cache = x
out = np.maximum(0, x)
return out, cache
def relu_backward(dout, cache):
"""Backward pass for a layer of rectified linear units.
Inputs:
- dout: upstream derevatives, of any shape
- cache: x, same shape as dout
Outputs:
- dx: gradient of loss w.r.t x
"""
x = cache
dx = dout * (x > 0)
return dx
def affine_relu_forward(x, w, b):
out, cache_a = affine_forward(x, w, b)
out, cache_r = relu_forward(out)
return out, (cache_a, cache_r)
def affine_relu_backward(dout, cache):
cache_a, cache_r = cache
dout = relu_backward(dout, cache_r)
dx, dw, db = affine_backward(dout, cache_a)
return dx, dw, db
def dropout_forward(x, dropout_param):
"""
Performs the forward pass for (inverted) dropout.
Inputs:
- x: Input data, of any shape
- dropout_param: A dictionary with the following keys:
- p: Dropout parameter. We drop each neuron output with probability p.
- mode: 'test' or 'train'. If the mode is train, then perform dropout;
if the mode is test, then just return the input.
- seed: Seed for the random number generator. Passing seed makes this
function deterministic, which is needed for gradient checking but not
in real networks.
Outputs:
- out: Array of the same shape as x.
- cache: tuple (dropout_param, mask). In training mode, mask is the dropout
mask that was used to multiply the input; in test mode, mask is None.
"""
p, mode = dropout_param['p'], dropout_param['mode']
if 'seed' in dropout_param:
np.random.seed(dropout_param['seed'])
mask = None
if mode == 'train':
mask = (np.random.rand(*x.shape) < (1 - p)) / (1 - p)
out = x * mask
elif mode == 'test':
out = x
cache = (dropout_param, mask)
out = out.astype(x.dtype, copy=False)
return out, cache
def dropout_backward(dout, cache):
"""
Perform the backward pass for (inverted) dropout.
Inputs:
- dout: Upstream derivatives, of any shape
- cache: (dropout_param, mask) from dropout_forward.
"""
dropout_param, mask = cache
mode = dropout_param['mode']
if mode == 'train':
dx = dout * mask
elif mode == 'test':
dx = dout
return dx
def batchnorm_forward(x, gamma, beta, bn_param):
N, D = x.shape
# get parameters
mode = bn_param['mode'] # mode is train or test
eps = bn_param.get('eps', 1e-5)
momentum = bn_param.get('momentum', 0.9)
running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))
cache = None
if mode == 'train':
# Normalize
mu = np.mean(x, axis=0)
xc = x - mu
var = np.mean(xc ** 2, axis=0)
std = (var + eps) ** 0.5
xn = xc / std
# Scale and Shift
out = gamma * xn + beta
cache = (x, xc, var, std, xn, gamma, eps)
# update running mean and running average
running_mean = momentum * running_mean + (1 - momentum) * mu
running_var = momentum * running_var + (1 - momentum) * var
bn_param['running_mean'] = running_mean
bn_param['running_var' ] = running_var
else:
xn = (x - running_mean) / (np.sqrt(running_var + eps))
out = gamma * xn + beta
return out, cache
def batchnorm_backward(dout, cache):
"""
Backward pass for batch normalization.
For this implementation, you should write out a computation graph for
batch normalization on paper and propagate gradients backward through
intermediate nodes.
Inputs:
- dout: Upstream derivatives, of shape (N, D)
- cache: Variable of intermediates from batchnorm_forward.
Returns a tuple of:
- dx: Gradient with respect to inputs x, of shape (N, D)
- dgamma: Gradient with respect to scale parameter gamma, of shape (D,)
- dbeta: Gradient with respect to shift parameter beta, of shape (D,)
"""
dx, dgamma, dbeta = None, None, None
x, xc, var, std, xn, gamma, eps = cache
N = x.shape[0]
dbeta = np.sum(dout, axis=0)
dgamma = np.sum(dout * xn, axis=0)
dxn = dout * gamma
dxc = dxn / std
dstd = np.sum(-(xc * dxn) / (std * std), axis=0)
dvar = 0.5 * dstd / std
dxc += (2.0 / N) * xc * dvar
dmu = -np.sum(dxc, axis=0)
dx = dxc + dmu / N
return dx, dgamma, dbeta
def svm_loss(scores, y):
"""
Fully-vectorized implementation of SVM loss function.
Inputs:
- scores: scores for all training data (N, C)
- y: correct labels for the training data of shape (N,)
Outputs:
- loss: data loss plus L2 regularization loss
- grads: graidents of loss w.r.t scores
"""
N = scores.shape[0]
# Compute svm data loss
correct_class_scores = scores[range(N), y]
margins = np.maximum(0.0, scores - correct_class_scores[:, None] + 1.0)
margins[range(N), y] = 0.0
loss = np.sum(margins) / N
# Compute gradient off loss function w.r.t. scores
num_pos = np.sum(margins > 0, axis=1)
dscores = np.zeros(scores.shape)
dscores[margins > 0] = 1
dscores[range(N), y] -= num_pos
dscores /= N
return loss, dscores
def softmax_loss(scores, y):
"""
Softmax loss function, fully vectorized implementation.
Inputs have dimension D, there are C classes, and we operate on minibatches
of N examples.
Inputs:
- scores: A numpy array of shape (N, C).
- y: A numpy array of shape (N,) containing training labels;
Outputs:
- loss as single float
- gradient with respect to scores
"""
N = scores.shape[0] # number of input data
# compute data loss
shifted_logits = scores - np.max(scores, axis=1, keepdims=True)
Z = np.sum(np.exp(shifted_logits), axis=1, keepdims=True)
log_probs = shifted_logits - np.log(Z)
probs = np.exp(log_probs)
loss = -np.sum(log_probs[range(N), y]) / N
# Compute gradient of loss function w.r.t. scores
dscores = probs.copy()
dscores[range(N), y] -= 1
dscores /= N
return loss, dscores