-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathExample_time_series.py
136 lines (95 loc) · 2.49 KB
/
Example_time_series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.3.1
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# +
import pandas as pd
import numpy as np
import seaborn as sns
from mtdlearn.mtd import MTD, RandomWalk
from mtdlearn.preprocessing import PathEncoder, SequenceCutter
# +
df = pd.read_csv('euro_usd.csv')
df['Change'] = df.Closing_rate.diff()
df['Change_enc'] = np.nan
df.loc[df.Change < 0.0, 'Change_enc'] = '1_DROP'
df.loc[df.Change < -0.005, 'Change_enc'] = '0_BIG_DROP'
df.loc[df.Change >= 0, 'Change_enc'] = '2_RISE'
df.loc[df.Change >= 0.005, 'Change_enc'] = '3_BIG_RISE'
df.dropna(inplace=True)
# -
# ## Fit models
aics = []
bics = []
# +
order = 0
pe = PathEncoder(0, return_vector=True, input_vector=True)
y = pe.fit_transform(df.Change_enc.values.astype(str))
model = RandomWalk(4)
model.fit(y)
aics.append(model.aic)
bics.append(model.bic)
print(model.aic.round(1), model.bic.round(1))
# +
order = 1
sc = SequenceCutter(order)
x, y = sc.transform(df.Change_enc.values)
pe = PathEncoder(order)
pe.fit(x, y)
x_tr, y_tr = pe.transform(x, y)
model = MTD(order=order, n_jobs=-1, number_of_initiations=100)
model.fit(x_tr, y_tr)
aics.append(model.aic)
bics.append(model.bic)
print(model.aic.round(1), model.bic.round(1))
# +
order = 2
sc = SequenceCutter(order)
x, y = sc.transform(df.Change_enc.values)
pe = PathEncoder(order)
pe.fit(x, y)
x_tr, y_tr = pe.transform(x, y)
model = MTD(order=order, n_jobs=-1, number_of_initiations=100)
model.fit(x_tr, y_tr)
aics.append(model.aic)
bics.append(model.bic)
print(model.aic.round(1), model.bic.round(1))
# +
order = 3
sc = SequenceCutter(order)
x, y = sc.transform(df.Change_enc.values)
pe = PathEncoder(order)
pe.fit(x, y)
x_tr, y_tr = pe.transform(x, y)
model = MTD(order=order, n_jobs=-1, number_of_initiations=100)
model.fit(x_tr, y_tr)
aics.append(model.aic)
bics.append(model.bic)
print(model.aic.round(1), model.bic.round(1))
# +
order = 4
sc = SequenceCutter(order)
x, y = sc.transform(df.Change_enc.values)
pe = PathEncoder(order)
pe.fit(x, y)
x_tr, y_tr = pe.transform(x, y)
model = MTD(order=order, n_jobs=-1, number_of_initiations=100)
model.fit(x_tr, y_tr)
aics.append(model.aic)
bics.append(model.bic)
print(model.aic.round(1), model.bic.round(1))
# -
# ## Choose model
xs = [0, 1, 2, 3, 4]
sns.lineplot(x=xs, y=aics)
sns.lineplot(x=xs, y=bics);