-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSocketImpl.cc
312 lines (287 loc) · 9.89 KB
/
SocketImpl.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/* Copyright (c) 2020, Stanford University
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "SocketImpl.h"
#include <PerfUtils/Cycles.h>
#include "Debug.h"
#include "Perf.h"
#include "RooPCImpl.h"
#include "ServerTaskImpl.h"
namespace Roo {
using PerfUtils::Cycles;
// Basic timeout unit.
const uint64_t BASE_TIMEOUT_US{2000};
/// Microseconds to wait before pinging to check on requests.
const uint64_t WORRY_TIMEOUT_US{BASE_TIMEOUT_US};
/// Microseconds of inactive before garbage collecting a task.
const uint64_t TASK_TIMEOUT_US{3 * BASE_TIMEOUT_US};
/**
* Construct a SocketImpl.
*
* @param transport
* Homa transport to which this socket has exclusive access.
*/
SocketImpl::SocketImpl(Homa::Transport* transport)
: transport(transport)
, socketId(transport->getId())
, nextSequenceNumber(1)
, mutex()
, rpcPool()
, taskPool()
, rpcs()
, tasks()
, rpcTimeouts(Cycles::fromMicroseconds(WORRY_TIMEOUT_US))
, taskTimeouts(Cycles::fromMicroseconds(TASK_TIMEOUT_US))
, pendingTasks()
{}
/**
* SocketImpl destructor.
*/
SocketImpl::~SocketImpl()
{
SpinLock::Lock lock(mutex);
while (!rpcs.empty()) {
auto it = rpcs.begin();
rpcTimeouts.cancelTimeout(&it->second->timeout);
rpcs.erase(it);
rpcPool.destroy(it->second);
}
while (!tasks.empty()) {
auto it = tasks.begin();
taskTimeouts.cancelTimeout(&it->second->timeout);
tasks.erase(it);
taskPool.destroy(it->second);
}
}
/**
* @copydoc Roo::Socket::allocRooPC()
*/
Roo::unique_ptr<RooPC>
SocketImpl::allocRooPC()
{
Perf::Timer timer;
SpinLock::Lock lock_socket(mutex);
Proto::RooId rooId = allocTaskId();
RpcHandle* handle = rpcPool.construct(this, rooId);
rpcs.insert({rooId, handle});
rpcTimeouts.setTimeout(&handle->timeout);
Perf::counters.client_api_cycles.add(timer.split());
return Roo::unique_ptr<RooPC>(&handle->rpc);
}
/**
* @copydoc Roo::Socket::receive()
*/
Roo::unique_ptr<ServerTask>
SocketImpl::receive()
{
Perf::Timer timer;
SpinLock::Lock lock_socket(mutex);
Roo::unique_ptr<ServerTask> task;
if (!pendingTasks.empty()) {
task = Roo::unique_ptr<ServerTask>(pendingTasks.front());
pendingTasks.pop_front();
Perf::counters.server_api_cycles.add(timer.split());
}
return task;
}
/**
* @copydoc Roo::Socket::poll()
*/
void
SocketImpl::poll()
{
// Let the transport make incremental progress.
transport->poll();
Perf::Timer timer;
processIncomingMessages();
checkClientTimeouts();
checkTaskTimeouts();
Perf::counters.poll_total_cycles.add(timer.split());
}
/**
* Discard a previously allocated RooPC.
*/
void
SocketImpl::dropRooPC(RooPCImpl* rpc)
{
SpinLock::Lock lock_socket(mutex);
auto it = rpcs.find(rpc->getId());
assert(it != rpcs.end());
RpcHandle* handle = it->second;
rpcTimeouts.cancelTimeout(&handle->timeout);
rpcs.erase(it);
rpcPool.destroy(handle);
}
/**
* Check and dispatch any incoming messages; separated from poll() for testing.
*/
void
SocketImpl::processIncomingMessages()
{
// Keep track of time spent doing active processing versus idle.
Perf::Timer activityTimer;
// Process incoming messages
for (Homa::unique_ptr<Homa::InMessage> message = transport->receive();
message; message = std::move(transport->receive())) {
Proto::HeaderCommon common;
message->get(0, &common, sizeof(common));
if (common.opcode == Proto::Opcode::Request) {
// Incoming message is a request.
Proto::RequestHeader header;
message->get(0, &header, sizeof(header));
Perf::counters.rx_message_bytes.add(message->length() -
sizeof(header));
ServerTaskHandle* handle = taskPool.construct(
this, allocTaskId(), &header, std::move(message));
SpinLock::Lock lock_socket(mutex);
tasks.insert({handle->task.getRequestId(), handle});
taskTimeouts.setTimeout(&handle->timeout);
pendingTasks.push_back(&handle->task);
} else if (common.opcode == Proto::Opcode::Response) {
// Incoming message is a response
Proto::ResponseHeader header;
message->get(0, &header, sizeof(header));
Perf::counters.rx_message_bytes.add(message->length() -
sizeof(header));
SpinLock::Lock lock_socket(mutex);
auto it = rpcs.find(header.rooId);
if (it != rpcs.end()) {
RooPCImpl* rpc = &it->second->rpc;
rpc->handleResponse(&header, std::move(message));
} else {
// There is no RooPC waiting for this message.
}
} else if (common.opcode == Proto::Opcode::Manifest) {
Proto::ManifestHeader manifest;
message->get(0, &manifest, sizeof(manifest));
SpinLock::Lock lock_socket(mutex);
auto it = rpcs.find(manifest.rooId);
if (it != rpcs.end()) {
RooPCImpl* rpc = &it->second->rpc;
rpc->handleManifest(&manifest, std::move(message));
} else {
// There is no RooPC waiting for this manifest.
}
} else if (common.opcode == Proto::Opcode::Ping) {
Proto::PingHeader header;
message->get(0, &header, sizeof(header));
SpinLock::Lock lock_socket(mutex);
auto it = tasks.find(header.requestId);
if (it != tasks.end()) {
ServerTaskImpl* task = &it->second->task;
task->handlePing(&header, std::move(message));
} else {
// There is no associated active ServerTask.
}
} else if (common.opcode == Proto::Opcode::Pong) {
Proto::PongHeader header;
message->get(0, &header, sizeof(header));
SpinLock::Lock lock_socket(mutex);
auto it = rpcs.find(header.rooId);
if (it != rpcs.end()) {
RooPCImpl* rpc = &it->second->rpc;
rpc->handlePong(&header, std::move(message));
} else {
// There is no RooPC waiting for this message.
}
} else if (common.opcode == Proto::Opcode::Error) {
Proto::ErrorHeader header;
message->get(0, &header, sizeof(header));
SpinLock::Lock lock_socket(mutex);
auto it = rpcs.find(header.rooId);
if (it != rpcs.end()) {
RooPCImpl* rpc = &it->second->rpc;
rpc->handleError(&header, std::move(message));
} else {
// There is no RooPC waiting for this message.
}
} else {
WARNING("Unexpected protocol message received.");
}
Perf::counters.poll_active_cycles.add(activityTimer.split());
}
}
/**
* Process any expired RooPC timeouts; seperated out of poll() for testing.
*/
void
SocketImpl::checkClientTimeouts()
{
// Keep track of time spent doing active processing versus idle.
Perf::Timer activityTimer;
// Avoid calling rdtsc() again and use the activityTimer time instead.
uint64_t now = activityTimer.read();
// Fast path check if there are any timeouts about to expire.
if (!rpcTimeouts.anyElapsed(now)) {
return;
}
SpinLock::Lock lock_socket(mutex);
while (!rpcTimeouts.empty()) {
Timeout<RpcHandle*>* timeout = rpcTimeouts.front();
if (!timeout->hasElapsed(now)) {
break;
} else {
RpcHandle* handle = timeout->object;
if (handle->rpc.handleTimeout()) {
rpcTimeouts.setTimeout(timeout);
} else {
rpcTimeouts.cancelTimeout(timeout);
}
Perf::counters.poll_active_cycles.add(activityTimer.split());
}
}
}
/**
* Process any expired task timeouts; seperated out of poll() for testing.
*/
void
SocketImpl::checkTaskTimeouts()
{
// Keep track of time spent doing active processing versus idle.
Perf::Timer activityTimer;
// Avoid calling rdtsc() again and use the activityTimer time instead.
uint64_t now = activityTimer.read();
// Fast path check if there are any timeouts about to expire.
if (!taskTimeouts.anyElapsed(now)) {
return;
}
SpinLock::Lock lock_socket(mutex);
while (!taskTimeouts.empty()) {
Timeout<ServerTaskHandle*>* timeout = taskTimeouts.front();
if (!timeout->hasElapsed(now)) {
break;
} else {
ServerTaskHandle* handle = timeout->object;
if (handle->task.handleTimeout()) {
// Timeout handled and reset
taskTimeouts.setTimeout(timeout);
} else {
taskTimeouts.cancelTimeout(timeout);
tasks.erase(handle->task.getRequestId());
taskPool.destroy(handle);
}
Perf::counters.poll_active_cycles.add(activityTimer.split());
}
}
}
/**
* Return a new unique TaskId.
*/
Proto::TaskId
SocketImpl::allocTaskId()
{
return Proto::TaskId(
socketId, nextSequenceNumber.fetch_add(1, std::memory_order_relaxed));
}
} // namespace Roo