forked from Colvars/colvars
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolvarcomp.cpp
714 lines (565 loc) · 23.1 KB
/
colvarcomp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#include <algorithm>
#include "colvarmodule.h"
#include "colvarvalue.h"
#include "colvar.h"
#include "colvarcomp.h"
colvar::cvc::cvc()
{
description = "uninitialized colvar component";
cvc::init_dependencies();
}
int colvar::cvc::update_description()
{
if (name.size() > 0) {
description = "cvc \"" + name + "\"";
} else {
description = "unnamed cvc";
}
description += " of type \"" + function_type() + "\"";
return COLVARS_OK;
}
std::string colvar::cvc::function_type() const
{
if (function_types.empty()) {
return "unset";
}
return function_types.back();
}
int colvar::cvc::set_function_type(std::string const &type)
{
function_types.push_back(type);
update_description();
cvm::main()->cite_feature(function_types[0]+" colvar component");
for (size_t i = function_types.size()-1; i > 0; i--) {
cvm::main()->cite_feature(function_types[i]+" colvar component"+
" (derived from "+function_types[i-1]+")");
}
return COLVARS_OK;
}
int colvar::cvc::init(std::string const &conf)
{
if (cvm::debug())
cvm::log("Initializing cvc base object.\n");
int error_code = COLVARS_OK;
std::string const old_name(name);
if (name.size() > 0) {
cvm::log("Updating configuration for component \""+name+"\"\n");
}
if (get_keyval(conf, "name", name, name)) {
if ((name != old_name) && (old_name.size() > 0)) {
error_code |= cvm::error("Error: cannot rename component \"" + old_name +
"\" after initialization (new name = \"" + name + "\")",
COLVARS_INPUT_ERROR);
name = old_name;
}
}
update_description();
get_keyval(conf, "componentCoeff", sup_coeff, sup_coeff);
get_keyval(conf, "componentExp", sup_np, sup_np);
if (sup_coeff != 1.0 || sup_np != 1) {
cvm::main()->cite_feature("Linear and polynomial combination of colvar components");
}
// TODO these could be condensed into get_keyval()
register_param("componentCoeff", reinterpret_cast<void *>(&sup_coeff));
register_param("componentExp", reinterpret_cast<void *>(&sup_np));
get_keyval(conf, "period", period, period);
get_keyval(conf, "wrapAround", wrap_center, wrap_center);
// TODO when init() is called after all constructors, check periodic flag
register_param("period", reinterpret_cast<void *>(&period));
register_param("wrapAround", reinterpret_cast<void *>(&wrap_center));
if (period != 0.0) {
if (!is_available(f_cvc_periodic)) {
error_code |=
cvm::error("Error: invalid use of period and/or "
"wrapAround in a \"" +
function_type() + "\" component.\n" + "Period: " + cvm::to_str(period) +
" wrapAround: " + cvm::to_str(wrap_center),
COLVARS_INPUT_ERROR);
} else {
enable(f_cvc_periodic);
}
}
if ((wrap_center != 0.0) && !is_enabled(f_cvc_periodic)) {
error_code |= cvm::error("Error: wrapAround was defined for a non-periodic component.\n",
COLVARS_INPUT_ERROR);
}
get_keyval_feature(this, conf, "debugGradients",
f_cvc_debug_gradient, false, parse_silent);
bool b_no_PBC = !is_enabled(f_cvc_pbc_minimum_image); // Enabled by default
get_keyval(conf, "forceNoPBC", b_no_PBC, b_no_PBC);
if (b_no_PBC) {
disable(f_cvc_pbc_minimum_image);
} else {
enable(f_cvc_pbc_minimum_image);
}
// Attempt scalable calculations when in parallel? (By default yes, if available)
get_keyval(conf, "scalable", b_try_scalable, b_try_scalable);
if (cvm::debug())
cvm::log("Done initializing cvc base object.\n");
return error_code;
}
int colvar::cvc::init_total_force_params(std::string const &conf)
{
if (cvm::get_error()) return COLVARS_ERROR;
if (get_keyval_feature(this, conf, "oneSiteSystemForce",
f_cvc_one_site_total_force, is_enabled(f_cvc_one_site_total_force))) {
cvm::log("Warning: keyword \"oneSiteSystemForce\" is deprecated: "
"please use \"oneSiteTotalForce\" instead.\n");
}
if (get_keyval_feature(this, conf, "oneSiteTotalForce",
f_cvc_one_site_total_force, is_enabled(f_cvc_one_site_total_force))) {
cvm::log("Computing total force on group 1 only\n");
}
if (! is_enabled(f_cvc_one_site_total_force)) {
// check whether any of the other atom groups is dummy
std::vector<cvm::atom_group *>::iterator agi = atom_groups.begin();
agi++;
for ( ; agi != atom_groups.end(); agi++) {
if ((*agi)->b_dummy) {
provide(f_cvc_inv_gradient, false);
provide(f_cvc_Jacobian, false);
}
}
}
return COLVARS_OK;
}
cvm::atom_group *colvar::cvc::parse_group(std::string const &conf,
char const *group_key,
bool optional)
{
int error_code = COLVARS_OK;
cvm::atom_group *group = nullptr;
std::string group_conf;
if (key_lookup(conf, group_key, &group_conf)) {
group = new cvm::atom_group(group_key);
if (b_try_scalable) {
if (is_available(f_cvc_scalable_com)
&& is_enabled(f_cvc_com_based)
&& !is_enabled(f_cvc_debug_gradient)) {
disable(f_cvc_explicit_gradient);
enable(f_cvc_scalable_com);
// The CVC makes the feature available;
// the atom group will enable it unless it needs to compute a rotational fit
group->provide(f_ag_scalable_com);
}
// TODO check for other types of parallelism here
}
if (group_conf.empty()) {
error_code |= cvm::error("Error: atom group \"" + group->key + "\" has no definition.\n",
COLVARS_INPUT_ERROR);
delete group;
group = nullptr;
// Silence unused variable warning; TODO stop returning a pointer
(void) error_code;
return group;
}
cvm::increase_depth();
error_code |= group->parse(group_conf);
if (error_code != COLVARS_OK) {
error_code |=
cvm::error("Error: in definition of atom group \"" + std::string(group_key) + "\".",
COLVARS_INPUT_ERROR);
delete group;
group = nullptr;
} else {
register_atom_group(group);
error_code |= group->check_keywords(group_conf, group_key);
}
cvm::decrease_depth();
} else {
if (!optional) {
error_code |=
cvm::error("Error: atom group \"" + std::string(group_key) + "\" is required.\n",
COLVARS_INPUT_ERROR);
}
}
// Silence unused variable warning; TODO stop returning a pointer
(void) error_code;
return group;
}
int colvar::cvc::init_dependencies() {
size_t i;
// Initialize static array once and for all
if (features().size() == 0) {
for (i = 0; i < colvardeps::f_cvc_ntot; i++) {
modify_features().push_back(new feature);
}
init_feature(f_cvc_active, "active", f_type_dynamic);
// The dependency below may become useful if we use dynamic atom groups
// require_feature_children(f_cvc_active, f_ag_active);
init_feature(f_cvc_scalar, "scalar", f_type_static);
init_feature(f_cvc_periodic, "periodic", f_type_static);
init_feature(f_cvc_width, "defined_width", f_type_static);
init_feature(f_cvc_lower_boundary, "defined_lower_boundary", f_type_static);
init_feature(f_cvc_upper_boundary, "defined_upper_boundary", f_type_static);
init_feature(f_cvc_explicit_atom_groups, "explicit_atom_groups", f_type_static);
init_feature(f_cvc_gradient, "gradient", f_type_dynamic);
init_feature(f_cvc_explicit_gradient, "explicit_gradient", f_type_static);
require_feature_children(f_cvc_explicit_gradient, f_ag_explicit_gradient);
init_feature(f_cvc_inv_gradient, "inverse_gradient", f_type_dynamic);
require_feature_self(f_cvc_inv_gradient, f_cvc_gradient);
init_feature(f_cvc_debug_gradient, "debug_gradient", f_type_user);
require_feature_self(f_cvc_debug_gradient, f_cvc_gradient);
require_feature_self(f_cvc_debug_gradient, f_cvc_explicit_gradient);
init_feature(f_cvc_Jacobian, "Jacobian_derivative", f_type_dynamic);
require_feature_self(f_cvc_Jacobian, f_cvc_inv_gradient);
// Compute total force on first site only to avoid unwanted
// coupling to other colvars (see e.g. Ciccotti et al., 2005)
init_feature(f_cvc_one_site_total_force, "total_force_from_one_group", f_type_user);
require_feature_self(f_cvc_one_site_total_force, f_cvc_com_based);
init_feature(f_cvc_com_based, "function_of_centers_of_mass", f_type_static);
init_feature(f_cvc_pbc_minimum_image, "use_minimum-image_with_PBCs", f_type_user);
init_feature(f_cvc_scalable, "scalable_calculation", f_type_dynamic);
require_feature_self(f_cvc_scalable_com, f_cvc_scalable);
// CVC cannot compute atom-level gradients on rank 0 if colvar computation is distributed
exclude_feature_self(f_cvc_scalable, f_cvc_explicit_gradient);
init_feature(f_cvc_scalable_com, "scalable_calculation_of_centers_of_mass", f_type_static);
require_feature_self(f_cvc_scalable_com, f_cvc_com_based);
// CVC cannot compute atom-level gradients if computed on atom group COM
exclude_feature_self(f_cvc_scalable_com, f_cvc_explicit_gradient);
init_feature(f_cvc_collect_atom_ids, "collect_atom_ids", f_type_dynamic);
require_feature_children(f_cvc_collect_atom_ids, f_ag_collect_atom_ids);
require_feature_self(f_cvc_collect_atom_ids, f_cvc_explicit_atom_groups);
// TODO only enable this when f_ag_scalable can be turned on for a pre-initialized group
// require_feature_children(f_cvc_scalable, f_ag_scalable);
// require_feature_children(f_cvc_scalable_com, f_ag_scalable_com);
// check that everything is initialized
for (i = 0; i < colvardeps::f_cvc_ntot; i++) {
if (is_not_set(i)) {
cvm::error("Uninitialized feature " + cvm::to_str(i) + " in " + description);
}
}
}
// Initialize feature_states for each instance
// default as available, not enabled
// except dynamic features which default as unavailable
feature_states.reserve(f_cvc_ntot);
for (i = feature_states.size(); i < colvardeps::f_cvc_ntot; i++) {
bool avail = is_dynamic(i) ? false : true;
feature_states.push_back(feature_state(avail, false));
}
// Features that are implemented by all cvcs by default
// Each cvc specifies what other features are available
feature_states[f_cvc_active].available = true;
feature_states[f_cvc_gradient].available = true;
feature_states[f_cvc_collect_atom_ids].available = true;
feature_states[f_cvc_periodic].available = false;
// CVCs are enabled from the start - get disabled based on flags
enable(f_cvc_active);
// Explicit gradients are implemented in most CVCs. Exceptions must be specified explicitly.
enable(f_cvc_explicit_gradient);
// Use minimum-image distances by default
enable(f_cvc_pbc_minimum_image);
// Features that are implemented by default if their requirements are
feature_states[f_cvc_one_site_total_force].available = true;
// Features That are implemented only for certain simulation engine configurations
feature_states[f_cvc_scalable_com].available = (cvm::proxy->scalable_group_coms() == COLVARS_OK);
feature_states[f_cvc_scalable].available = feature_states[f_cvc_scalable_com].available;
return COLVARS_OK;
}
int colvar::cvc::setup()
{
update_description();
return COLVARS_OK;
}
colvar::cvc::~cvc()
{
free_children_deps();
remove_all_children();
for (size_t i = 0; i < atom_groups.size(); i++) {
if (atom_groups[i] != NULL) delete atom_groups[i];
}
}
void colvar::cvc::init_as_distance()
{
x.type(colvarvalue::type_scalar);
enable(f_cvc_lower_boundary);
lower_boundary.type(colvarvalue::type_scalar);
lower_boundary.real_value = 0.0;
register_param("lowerBoundary", reinterpret_cast<void *>(&lower_boundary));
}
void colvar::cvc::init_as_angle()
{
x.type(colvarvalue::type_scalar);
init_scalar_boundaries(0.0, 180.0);
}
void colvar::cvc::init_as_periodic_angle()
{
x.type(colvarvalue::type_scalar);
provide(f_cvc_periodic);
enable(f_cvc_periodic);
period = 360.0;
init_scalar_boundaries(-180.0, 180.0);
}
void colvar::cvc::init_scalar_boundaries(cvm::real lb, cvm::real ub)
{
enable(f_cvc_lower_boundary);
lower_boundary.type(colvarvalue::type_scalar);
lower_boundary.real_value = lb;
enable(f_cvc_upper_boundary);
upper_boundary.type(colvarvalue::type_scalar);
upper_boundary.real_value = ub;
register_param("lowerBoundary", reinterpret_cast<void *>(&lower_boundary));
register_param("upperBoundary", reinterpret_cast<void *>(&upper_boundary));
}
void colvar::cvc::register_atom_group(cvm::atom_group *ag)
{
atom_groups.push_back(ag);
add_child(ag);
enable(f_cvc_explicit_atom_groups);
}
colvarvalue const *colvar::cvc::get_param_grad(std::string const ¶m_name)
{
colvarvalue const *ptr =
reinterpret_cast<colvarvalue const *>(get_param_grad_ptr(param_name));
return ptr != NULL ? ptr : NULL;
}
int colvar::cvc::set_param(std::string const ¶m_name,
void const *new_value)
{
if (param_map.count(param_name) > 0) {
// TODO When we can use C++11, make this a proper function map
if (param_name.compare("componentCoeff") == 0) {
sup_coeff = *(reinterpret_cast<cvm::real const *>(new_value));
}
if (param_name.compare("componentExp") == 0) {
sup_np = *(reinterpret_cast<int const *>(new_value));
}
if (is_enabled(f_cvc_periodic)) {
if (param_name.compare("period") == 0) {
period = *(reinterpret_cast<cvm::real const *>(new_value));
}
if (param_name.compare("wrapAround") == 0) {
wrap_center = *(reinterpret_cast<cvm::real const *>(new_value));
}
}
}
return colvarparams::set_param(param_name, new_value);
}
void colvar::cvc::read_data()
{
if (is_enabled(f_cvc_explicit_atom_groups)) {
for (auto agi = atom_groups.begin(); agi != atom_groups.end(); agi++) {
cvm::atom_group &atoms = *(*agi);
atoms.reset_atoms_data();
atoms.read_positions();
atoms.calc_required_properties();
// each atom group will take care of its own fitting_group, if defined
}
}
}
std::vector<std::vector<int>> colvar::cvc::get_atom_lists()
{
std::vector<std::vector<int>> lists;
std::vector<cvm::atom_group *>::iterator agi = atom_groups.begin();
for ( ; agi != atom_groups.end(); ++agi) {
(*agi)->create_sorted_ids();
lists.push_back((*agi)->sorted_ids());
if ((*agi)->is_enabled(f_ag_fitting_group) && (*agi)->is_enabled(f_ag_fit_gradients)) {
cvm::atom_group &fg = *((*agi)->fitting_group);
fg.create_sorted_ids();
lists.push_back(fg.sorted_ids());
}
}
return lists;
}
void colvar::cvc::collect_gradients(std::vector<int> const &atom_ids, std::vector<cvm::rvector> &atomic_gradients)
{
// Coefficient: d(a * x^n) = a * n * x^(n-1) * dx
cvm::real coeff = sup_coeff * cvm::real(sup_np) *
cvm::integer_power(value().real_value, sup_np-1);
for (size_t j = 0; j < atom_groups.size(); j++) {
cvm::atom_group &ag = *(atom_groups[j]);
// If necessary, apply inverse rotation to get atomic
// gradient in the laboratory frame
if (ag.is_enabled(f_ag_rotate)) {
const auto rot_inv = ag.rot.inverse().matrix();
for (size_t k = 0; k < ag.size(); k++) {
size_t a = std::lower_bound(atom_ids.begin(), atom_ids.end(),
ag[k].id) - atom_ids.begin();
atomic_gradients[a] += coeff * (rot_inv * ag[k].grad);
}
} else {
for (size_t k = 0; k < ag.size(); k++) {
size_t a = std::lower_bound(atom_ids.begin(), atom_ids.end(),
ag[k].id) - atom_ids.begin();
atomic_gradients[a] += coeff * ag[k].grad;
}
}
if (ag.is_enabled(f_ag_fitting_group) && ag.is_enabled(f_ag_fit_gradients)) {
cvm::atom_group const &fg = *(ag.fitting_group);
for (size_t k = 0; k < fg.size(); k++) {
size_t a = std::lower_bound(atom_ids.begin(), atom_ids.end(),
fg[k].id) - atom_ids.begin();
// fit gradients are in the unrotated (simulation) frame
atomic_gradients[a] += coeff * fg.fit_gradients[k];
}
}
}
}
void colvar::cvc::calc_force_invgrads()
{
cvm::error("Error: calculation of inverse gradients is not implemented "
"for colvar components of type \""+function_type()+"\".\n",
COLVARS_NOT_IMPLEMENTED);
}
void colvar::cvc::calc_Jacobian_derivative()
{
cvm::error("Error: calculation of inverse gradients is not implemented "
"for colvar components of type \""+function_type()+"\".\n",
COLVARS_NOT_IMPLEMENTED);
}
void colvar::cvc::calc_fit_gradients()
{
if (is_enabled(f_cvc_explicit_gradient)) {
for (size_t ig = 0; ig < atom_groups.size(); ig++) {
atom_groups[ig]->calc_fit_gradients();
}
}
}
void colvar::cvc::apply_force(colvarvalue const &cvforce)
{
if (is_enabled(f_cvc_explicit_atom_groups)) {
for (auto agi = atom_groups.begin(); agi != atom_groups.end(); agi++) {
if (!(*agi)->noforce) {
(*agi)->apply_colvar_force(cvforce);
}
}
}
}
void colvar::cvc::debug_gradients()
{
// this function should work for any scalar cvc:
// the only difference will be the name of the atom group (here, "group")
// NOTE: this assumes that groups for this cvc are non-overlapping,
// since atom coordinates are modified only within the current group
cvm::log("Debugging gradients for " + description);
for (size_t ig = 0; ig < atom_groups.size(); ig++) {
cvm::atom_group *group = atom_groups[ig];
if (group->b_dummy) continue;
const auto rot_0 = group->rot.matrix();
const auto rot_inv = group->rot.inverse().matrix();
cvm::real x_0 = x.real_value;
if ((x.type() == colvarvalue::type_vector) && (x.size() == 1)) x_0 = x[0];
// cvm::log("gradients = "+cvm::to_str (gradients)+"\n");
cvm::atom_group *group_for_fit = group->fitting_group ? group->fitting_group : group;
cvm::atom_pos fit_gradient_sum, gradient_sum;
// print the values of the fit gradients
if (group->is_enabled(f_ag_center) || group->is_enabled(f_ag_rotate)) {
if (group->is_enabled(f_ag_fit_gradients)) {
size_t j;
// fit_gradients are in the simulation frame: we should print them in the rotated frame
cvm::log("Fit gradients:\n");
for (j = 0; j < group_for_fit->fit_gradients.size(); j++) {
cvm::log((group->fitting_group ? std::string("refPosGroup") : group->key) +
"[" + cvm::to_str(j) + "] = " +
(group->is_enabled(f_ag_rotate) ?
cvm::to_str(rot_0 * (group_for_fit->fit_gradients[j])) :
cvm::to_str(group_for_fit->fit_gradients[j])));
}
}
}
// debug the gradients
for (size_t ia = 0; ia < group->size(); ia++) {
// tests are best conducted in the unrotated (simulation) frame
cvm::rvector const atom_grad = (group->is_enabled(f_ag_rotate) ?
rot_inv * ((*group)[ia].grad) :
(*group)[ia].grad);
gradient_sum += atom_grad;
for (size_t id = 0; id < 3; id++) {
// (re)read original positions
group->read_positions();
// change one coordinate
(*group)[ia].pos[id] += cvm::debug_gradients_step_size;
group->calc_required_properties();
calc_value();
cvm::real x_1 = x.real_value;
if ((x.type() == colvarvalue::type_vector) && (x.size() == 1)) x_1 = x[0];
cvm::log("Atom "+cvm::to_str(ia)+", component "+cvm::to_str(id)+":\n");
cvm::log("dx(actual) = "+cvm::to_str(x_1 - x_0,
21, 14)+"\n");
cvm::real const dx_pred = (group->fit_gradients.size()) ?
(cvm::debug_gradients_step_size * (atom_grad[id] + group->fit_gradients[ia][id])) :
(cvm::debug_gradients_step_size * atom_grad[id]);
cvm::log("dx(interp) = "+cvm::to_str(dx_pred,
21, 14)+"\n");
cvm::log("|dx(actual) - dx(interp)|/|dx(actual)| = "+
cvm::to_str(cvm::fabs(x_1 - x_0 - dx_pred) /
cvm::fabs(x_1 - x_0), 12, 5)+"\n");
}
}
if ((group->is_enabled(f_ag_fit_gradients)) && (group->fitting_group != NULL)) {
cvm::atom_group *ref_group = group->fitting_group;
group->read_positions();
group->calc_required_properties();
for (size_t ia = 0; ia < ref_group->size(); ia++) {
// fit gradients are in the unrotated (simulation) frame
cvm::rvector const atom_grad = ref_group->fit_gradients[ia];
fit_gradient_sum += atom_grad;
for (size_t id = 0; id < 3; id++) {
// (re)read original positions
group->read_positions();
ref_group->read_positions();
// change one coordinate
(*ref_group)[ia].pos[id] += cvm::debug_gradients_step_size;
group->calc_required_properties();
calc_value();
cvm::real const x_1 = x.real_value;
cvm::log("refPosGroup atom "+cvm::to_str(ia)+", component "+cvm::to_str (id)+":\n");
cvm::log("dx(actual) = "+cvm::to_str (x_1 - x_0,
21, 14)+"\n");
cvm::real const dx_pred = cvm::debug_gradients_step_size * atom_grad[id];
cvm::log("dx(interp) = "+cvm::to_str (dx_pred,
21, 14)+"\n");
cvm::log ("|dx(actual) - dx(interp)|/|dx(actual)| = "+
cvm::to_str(cvm::fabs (x_1 - x_0 - dx_pred) /
cvm::fabs (x_1 - x_0),
12, 5)+
".\n");
}
}
}
cvm::log("Gradient sum: " + cvm::to_str(gradient_sum) +
" Fit gradient sum: " + cvm::to_str(fit_gradient_sum) +
" Total " + cvm::to_str(gradient_sum + fit_gradient_sum));
}
return;
}
cvm::real colvar::cvc::dist2(colvarvalue const &x1, colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
if (is_enabled(f_cvc_periodic)) {
cvm::real const shift = cvm::floor(diff / period + 0.5);
diff -= shift * period;
}
return diff * diff;
}
colvarvalue colvar::cvc::dist2_lgrad(colvarvalue const &x1, colvarvalue const &x2) const
{
cvm::real diff = x1.real_value - x2.real_value;
if (is_enabled(f_cvc_periodic)) {
cvm::real const shift = cvm::floor(diff / period + 0.5);
diff -= shift * period;
}
return 2.0 * diff;
}
colvarvalue colvar::cvc::dist2_rgrad(colvarvalue const &x1, colvarvalue const &x2) const
{
return cvc::dist2_lgrad(x1, x2);
}
void colvar::cvc::wrap(colvarvalue &x_unwrapped) const
{
if (is_enabled(f_cvc_periodic)) {
cvm::real const shift = cvm::floor((x_unwrapped.real_value - wrap_center) / period + 0.5);
x_unwrapped.real_value -= shift * period;
}
}
// Static members
std::vector<colvardeps::feature *> colvar::cvc::cvc_features;