forked from bmaltais/kohya_ss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
group_images.py
182 lines (159 loc) · 8.37 KB
/
group_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import shutil
from PIL import Image, ImageOps
import os
import numpy as np
from library.custom_logging import setup_logging
# Set up logging
log = setup_logging()
class ImageProcessor:
def __init__(self, input_folder, output_folder, group_size, include_subfolders, do_not_copy_other_files, pad, caption, caption_ext):
self.input_folder = input_folder
self.output_folder = output_folder
self.group_size = group_size
self.include_subfolders = include_subfolders
self.do_not_copy_other_files = do_not_copy_other_files
self.pad = pad
self.caption = caption
self.caption_ext = caption_ext
self.image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.webp')
def get_image_paths(self):
images = []
if self.include_subfolders:
for dirpath, dirnames, filenames in os.walk(self.input_folder):
for filename in filenames:
if filename.endswith(self.image_extensions):
images.append(os.path.join(dirpath, filename))
else:
images = [os.path.join(self.input_folder, f) for f in os.listdir(self.input_folder) if f.endswith(self.image_extensions)]
return images
def group_images(self, images):
sorted_images = sorted(images, key=lambda path: Image.open(path).size[0] / Image.open(path).size[1])
groups = [sorted_images[i:i+self.group_size] for i in range(0, len(sorted_images), self.group_size)]
return groups
def process_group(self, group, group_index):
if len(group) > 0:
aspect_ratios = self.get_aspect_ratios(group)
avg_aspect_ratio = np.mean(aspect_ratios)
if self.pad:
padded_images = self.pad_images(group, avg_aspect_ratio)
self.resize_and_save_images(padded_images, group_index, group)
else:
cropped_images = self.crop_images(group, avg_aspect_ratio)
self.resize_and_save_images(cropped_images, group_index, group)
if not self.do_not_copy_other_files:
self.copy_other_files(group, group_index)
def get_aspect_ratios(self, group):
aspect_ratios = []
for path in group:
with Image.open(path) as img:
width, height = img.size
aspect_ratios.append(width / height)
return aspect_ratios
def crop_images(self, group, avg_aspect_ratio):
cropped_images = []
for j, path in enumerate(group):
with Image.open(path) as img:
log.info(f" Processing image {j+1}: {path}")
img = self.crop_image(img, avg_aspect_ratio)
cropped_images.append(img)
return cropped_images
def crop_image(self, img, avg_aspect_ratio):
img_aspect_ratio = img.width / img.height
if img_aspect_ratio > avg_aspect_ratio:
# Too wide, reduce width
new_width = avg_aspect_ratio * img.height
left = (img.width - new_width) / 2
right = left + new_width
img = img.crop((left, 0, right, img.height))
else:
# Too tall, reduce height
new_height = img.width / avg_aspect_ratio
top = (img.height - new_height) / 2
bottom = top + new_height
img = img.crop((0, top, img.width, bottom))
return img
def resize_and_save_images(self, cropped_images, group_index, source_paths):
max_width = max(img.width for img in cropped_images)
max_height = max(img.height for img in cropped_images)
for j, img in enumerate(cropped_images):
img = img.resize((max_width, max_height))
os.makedirs(self.output_folder, exist_ok=True)
original_filename = os.path.basename(source_paths[j])
filename_without_ext = os.path.splitext(original_filename)[0]
output_path = os.path.join(self.output_folder, f"group-{group_index+1}-{filename_without_ext}.jpg")
log.info(f" Saving processed image to {output_path}")
img.convert('RGB').save(output_path)
if self.caption:
self.create_caption_file(source_paths[j], group_index, filename_without_ext)
def create_caption_file(self, source_path, group_index, caption_filename):
dirpath = os.path.dirname(source_path)
caption = os.path.basename(dirpath).split('_')[-1]
caption_filename = caption_filename + self.caption_ext
caption_path = os.path.join(self.output_folder, f"group-{group_index+1}-{caption_filename}")
with open(caption_path, 'w') as f:
f.write(caption)
def copy_other_files(self, group, group_index):
for j, path in enumerate(group):
dirpath, original_filename = os.path.split(path)
original_basename, original_ext = os.path.splitext(original_filename)
for filename in os.listdir(dirpath):
if filename.endswith('.npz'): # Skip .npz
continue
basename, ext = os.path.splitext(filename)
if basename == original_basename and ext != original_ext:
shutil.copy2(os.path.join(dirpath, filename), os.path.join(self.output_folder, f"group-{group_index+1}-image-{j+1}{ext}"))
def process_images(self):
images = self.get_image_paths()
groups = self.group_images(images)
for i, group in enumerate(groups):
log.info(f"Processing group {i+1} with {len(group)} images...")
self.process_group(group, i)
def process_group(self, group, group_index):
if len(group) > 0:
aspect_ratios = self.get_aspect_ratios(group)
avg_aspect_ratio = np.mean(aspect_ratios)
if self.pad:
padded_images = self.pad_images(group, avg_aspect_ratio)
self.resize_and_save_images(padded_images, group_index, group)
else:
cropped_images = self.crop_images(group, avg_aspect_ratio)
self.resize_and_save_images(cropped_images, group_index, group)
if not self.do_not_copy_other_files:
self.copy_other_files(group, group_index)
def pad_images(self, group, avg_aspect_ratio):
padded_images = []
for j, path in enumerate(group):
with Image.open(path) as img:
log.info(f" Processing image {j+1}: {path}")
img = self.pad_image(img, avg_aspect_ratio)
padded_images.append(img)
return padded_images
def pad_image(self, img, avg_aspect_ratio):
img_aspect_ratio = img.width / img.height
if img_aspect_ratio < avg_aspect_ratio:
# Too tall, increase width
new_width = avg_aspect_ratio * img.height
pad_width = int((new_width - img.width) / 2)
img = ImageOps.expand(img, border=(pad_width, 0), fill='black')
else:
# Too wide, increase height
new_height = img.width / avg_aspect_ratio
pad_height = int((new_height - img.height) / 2)
img = ImageOps.expand(img, border=(0, pad_height), fill='black')
return img
def main():
parser = argparse.ArgumentParser(description='Process groups of images.')
parser.add_argument('input_folder', type=str, help='Input folder containing images')
parser.add_argument('output_folder', type=str, help='Output folder to store processed images')
parser.add_argument('group_size', type=int, help='Number of images in each group')
parser.add_argument('--include_subfolders', action='store_true', help='Include subfolders in search for images')
parser.add_argument('--do_not_copy_other_files', '--no_copy', dest='do_not_copy_other_files', action='store_true', help='Do not copy other files with the same name as images')
parser.add_argument('--pad', action='store_true', help='Pad images instead of cropping them')
parser.add_argument('--caption', action='store_true', help='Create a caption file for each image')
parser.add_argument('--caption_ext', type=str, default='.txt', help='Extension for the caption file')
args = parser.parse_args()
processor = ImageProcessor(args.input_folder, args.output_folder, args.group_size, args.include_subfolders, args.do_not_copy_other_files, args.pad, args.caption, args.caption_ext)
processor.process_images()
if __name__ == "__main__":
main()