forked from scrtlabs/catalyst
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_examples.py
83 lines (70 loc) · 2.89 KB
/
test_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#
# Copyright 2013 Quantopian, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import tarfile
import matplotlib
from nose_parameterized import parameterized
import pandas as pd
from zipline import examples
from zipline.data.bundles import register, unregister
from zipline.testing import test_resource_path
from zipline.testing.fixtures import WithTmpDir, ZiplineTestCase
from zipline.testing.predicates import assert_equal
from zipline.utils.cache import dataframe_cache
from zipline.utils.paths import update_modified_time
# Otherwise the next line sometimes complains about being run too late.
_multiprocess_can_split_ = False
matplotlib.use('Agg')
class ExamplesTests(WithTmpDir, ZiplineTestCase):
# some columns contain values with unique ids that will not be the same
@classmethod
def init_class_fixtures(cls):
super(ExamplesTests, cls).init_class_fixtures()
register('test', lambda *args: None)
cls.add_class_callback(partial(unregister, 'test'))
with tarfile.open(test_resource_path('example_data.tar.gz')) as tar:
tar.extractall(cls.tmpdir.path)
cls.expected_perf = dataframe_cache(
cls.tmpdir.getpath(
'example_data/expected_perf/%s' %
pd.__version__.replace('.', '-'),
),
serialization='pickle',
)
market_data = ('SPY_benchmark.csv', 'treasury_curves.csv')
for data in market_data:
update_modified_time(
cls.tmpdir.getpath(
'example_data/root/data/' + data
)
)
@parameterized.expand(sorted(examples.EXAMPLE_MODULES))
def test_example(self, example_name):
actual_perf = examples.run_example(
example_name,
# This should match the invocation in
# zipline/tests/resources/rebuild_example_data
environ={
'ZIPLINE_ROOT': self.tmpdir.getpath('example_data/root'),
},
)
assert_equal(
actual_perf[examples._cols_to_check],
self.expected_perf[example_name][examples._cols_to_check],
# There is a difference in the datetime columns in pandas
# 0.16 and 0.17 because in 16 they are object and in 17 they are
# datetime[ns, UTC]. We will just ignore the dtypes for now.
check_dtype=False,
)