-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_H3D.py
304 lines (238 loc) · 9.48 KB
/
train_H3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Callable script to start a training on H3D dataset
#
# ----------------------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import signal
# Dataset
from datasets.H3D import *
from torch.utils.data import DataLoader
from utils.config import Config
from utils.trainer import ModelTrainer
from models.architectures import KPFCNN
# ----------------------------------------------------------------------------------------------------------------------
#
# Config Class
# \******************/
#
class H3DConfig(Config):
"""
Override the parameters you want to modify for this dataset
"""
####################
# Dataset parameters
####################
# Dataset name
dataset = 'H3D'
# Number of classes in the dataset (This value is overwritten by dataset class when Initializating dataset).
num_classes = None
# Type of task performed on this dataset (also overwritten)
dataset_task = ''
# Number of CPU threads for the input pipeline
input_threads = 12
#########################
# Architecture definition
#########################
# Define layers
architecture = ['simple',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb',
'resnetb_strided',
'resnetb',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary',
'nearest_upsample',
'unary'
]
###################
# KPConv parameters
###################
# Radius of the input sphere
in_radius = 5.0
# Number of kernel points
num_kernel_points = 15
# Size of the first subsampling grid in meter
first_subsampling_dl = 0.1
# Radius of convolution in "number grid cell". (2.5 is the standard value)
conv_radius = 2.5
# Radius of deformable convolution in "number grid cell". Larger so that deformed kernel can spread out
deform_radius = 5.0
# Radius of the area of influence of each kernel point in "number grid cell". (1.0 is the standard value)
KP_extent = 1.0
# Behavior of convolutions in ('constant', 'linear', 'gaussian')
KP_influence = 'linear'
# Aggregation function of KPConv in ('closest', 'sum')
aggregation_mode = 'sum'
# Choice of input features
first_features_dim = 64
in_features_dim = 4
# Can the network learn modulations
modulated = False
# Batch normalization parameters
use_batch_norm = True
batch_norm_momentum = 0.02
# Deformable offset loss
# 'point2point' fitting geometry by penalizing distance from deform point to input points
# 'point2plane' fitting geometry by penalizing distance from deform point to input point triplet (not implemented)
deform_fitting_mode = 'point2point'
deform_fitting_power = 1.0 # Multiplier for the fitting/repulsive loss
deform_lr_factor = 0.1 # Multiplier for learning rate applied to the deformations
repulse_extent = 1.2 # Distance of repulsion for deformed kernel points
#####################
# Training parameters
#####################
# Maximal number of epochs
max_epoch = 200
# Learning rate management
learning_rate = 1e-3
momentum = 0.98
lr_decays = {i: 0.1 ** (1 / 100) for i in range(1, max_epoch+1)}
grad_clip_norm = 100.0
# Number of batch
batch_num = 1
batch_limit = 150000
# Number of steps per epochs
epoch_steps = 400
# Number of validation examples per epoch
validation_size = 20
# Number of epoch between each checkpoint
checkpoint_gap = 20
# Augmentations
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.9
augment_scale_max = 1.1
augment_noise = 0.02
augment_color = 1.0
# The way we balance segmentation loss
# > 'none': Each point in the whole batch has the same contribution.
# > 'class': Each class has the same contribution (points are weighted according to class balance)
# > 'batch': Each cloud in the batch has the same contribution (points are weighted according cloud sizes)
segloss_balance = 'class'
# Do we nee to save convergence
saving = True
saving_path = None
weak_level = 1 # number of labeled points for each class in sub-clouds, 1 for one class one click
al_itr = 5 # number of iterations for active learning
al_initnum = 150 # number of initial samples
al_num = 150 # number of samples to be added each time
acc_thr = 0.98 # accuracy threshold for early stopping
serial = '1' # serial number of the experiment for robustness test
test_mode = False
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == '__main__':
############################
# Initialize the environment
############################
# Set which gpu is going to be used
GPU_ID = '0'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
###############
# Previous chkp
###############
# Initialize configuration class
config = H3DConfig()
# Choose here if you want to start training from a previous snapshot (None for new training)
config.previous_training_path = ''
if config.previous_training_path:
# config.load(os.path.join('results', config.dataset, config.previous_training_path))
config.saving_path = None
# Choose index of checkpoint to start from. If None, uses the latest chkp
config.chkp_idx = -1
if config.previous_training_path:
# Find all snapshot in the chosen training folder
chkp_path = os.path.join('results', config.dataset, config.previous_training_path, 'checkpoints')
chkps = [f for f in os.listdir(chkp_path) if f[:4] == 'chkp']
# Find which snapshot to restore
if config.chkp_idx is None:
chosen_chkp = 'current_chkp.tar'
else:
chosen_chkp = np.sort(chkps)[config.chkp_idx]
chosen_chkp = os.path.join('results', config.dataset, config.previous_training_path, 'checkpoints', chosen_chkp)
else:
chosen_chkp = None
##############
# Prepare Data
##############
print()
print('Data Preparation')
print('****************')
# Initialize datasets
training_dataset = H3DDataset(config, set='training', use_potentials=True)
test_dataset = H3DDataset(config, set='validation', use_potentials=True)
# Initialize samplers
training_sampler = H3DSampler(training_dataset)
test_sampler = H3DSampler(test_dataset)
# Initialize the dataloader
training_loader = DataLoader(training_dataset,
batch_size=1,
sampler=training_sampler,
collate_fn=H3DCollate,
num_workers=config.input_threads,
pin_memory=True)
test_loader = DataLoader(test_dataset,
batch_size=1,
sampler=test_sampler,
collate_fn=H3DCollate,
num_workers=config.input_threads,
pin_memory=True)
# Set to use all subclouds for calibration
temp = training_dataset.config.weak_level
training_dataset.config.weak_level = None
# Calibrate samplers
training_sampler.calibration(training_loader, verbose=True)
# Reset to normal mode
training_dataset.config.weak_level = temp
print('\nModel Preparation')
print('*****************')
# Define network model
t1 = time.time()
net = KPFCNN(config, training_dataset.label_values, training_dataset.ignored_labels)
debug = False
if debug:
# print('\n*************************************\n')
# print(net)
# print('\n*************************************\n')
# for param in net.parameters():
# if param.requires_grad:
# print(param.shape)
print('\n*************************************\n')
print("Model size %i" % sum(param.numel() for param in net.parameters() if param.requires_grad))
print('\n*************************************\n')
# Define a trainer class
trainer = ModelTrainer(net, config, chkp_path=chosen_chkp)
print('Done in {:.1f}s\n'.format(time.time() - t1))
print('\nStart training')
print('**************')
# Training
trainer.train(net, training_loader, test_loader, config)
print('Forcing exit now')
os.kill(os.getpid(), signal.SIGINT)