-
Notifications
You must be signed in to change notification settings - Fork 3
/
loss.py
101 lines (78 loc) · 5.44 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import torch.nn as nn
from torch.autograd import Variable
from util import shave_a2b, resize_tensor_w_kernel, create_penalty_mask, map2tensor
# noinspection PyUnresolvedReferences
class GANLoss(nn.Module):
"""D outputs a [0,1] map of size of the input. This map is compared in a pixel-wise manner to 1/0 according to
whether the input is real (i.e. from the input image) or fake (i.e. from the Generator)"""
def __init__(self, d_last_layer_size):
super(GANLoss, self).__init__()
# The loss function is applied after the pixel-wise comparison to the true label (0/1)
self.loss = nn.L1Loss(reduction='mean')
# Make a shape
d_last_layer_shape = [1, 1, d_last_layer_size, d_last_layer_size]
# The two possible label maps are pre-prepared
self.label_tensor_fake = Variable(torch.zeros(d_last_layer_shape).cuda(), requires_grad=False)
self.label_tensor_real = Variable(torch.ones(d_last_layer_shape).cuda(), requires_grad=False)
def forward(self, d_last_layer, is_d_input_real):
# Determine label map according to whether current input to discriminator is real or fake
label_tensor = self.label_tensor_real if is_d_input_real else self.label_tensor_fake
# Compute the loss
return self.loss(d_last_layer, label_tensor)
class DownScaleLoss(nn.Module):
""" Computes the difference between the Generator's downscaling and an ideal (bicubic) downscaling"""
def __init__(self, scale_factor):
super(DownScaleLoss, self).__init__()
self.loss = nn.MSELoss()
bicubic_k = [[0.0001373291015625, 0.0004119873046875, -0.0013275146484375, -0.0050811767578125, -0.0050811767578125, -0.0013275146484375, 0.0004119873046875, 0.0001373291015625],
[0.0004119873046875, 0.0012359619140625, -0.0039825439453125, -0.0152435302734375, -0.0152435302734375, -0.0039825439453125, 0.0012359619140625, 0.0004119873046875],
[-.0013275146484375, -0.0039825439453130, 0.0128326416015625, 0.0491180419921875, 0.0491180419921875, 0.0128326416015625, -0.0039825439453125, -0.0013275146484375],
[-.0050811767578125, -0.0152435302734375, 0.0491180419921875, 0.1880035400390630, 0.1880035400390630, 0.0491180419921875, -0.0152435302734375, -0.0050811767578125],
[-.0050811767578125, -0.0152435302734375, 0.0491180419921875, 0.1880035400390630, 0.1880035400390630, 0.0491180419921875, -0.0152435302734375, -0.0050811767578125],
[-.0013275146484380, -0.0039825439453125, 0.0128326416015625, 0.0491180419921875, 0.0491180419921875, 0.0128326416015625, -0.0039825439453125, -0.0013275146484375],
[0.0004119873046875, 0.0012359619140625, -0.0039825439453125, -0.0152435302734375, -0.0152435302734375, -0.0039825439453125, 0.0012359619140625, 0.0004119873046875],
[0.0001373291015625, 0.0004119873046875, -0.0013275146484375, -0.0050811767578125, -0.0050811767578125, -0.0013275146484375, 0.0004119873046875, 0.0001373291015625]]
self.bicubic_kernel = Variable(torch.Tensor(bicubic_k).cuda(), requires_grad=False)
self.scale_factor = scale_factor
def forward(self, g_input, g_output):
downscaled = resize_tensor_w_kernel(im_t=g_input, k=self.bicubic_kernel, sf=self.scale_factor)
# Shave the downscaled to fit g_output
return self.loss(g_output, shave_a2b(downscaled, g_output))
class SumOfWeightsLoss(nn.Module):
""" Encourages the kernel G is imitating to sum to 1 """
def __init__(self):
super(SumOfWeightsLoss, self).__init__()
self.loss = nn.L1Loss()
def forward(self, kernel):
return self.loss(torch.ones(1).to(kernel.device), torch.sum(kernel))
class CentralizedLoss(nn.Module):
""" Penalizes distance of center of mass from K's center"""
def __init__(self, k_size, scale_factor=.5):
super(CentralizedLoss, self).__init__()
self.indices = Variable(torch.arange(0., float(k_size)).cuda(), requires_grad=False)
wanted_center_of_mass = k_size // 2 + 0.5 * (int(1 / scale_factor) - k_size % 2)
self.center = Variable(torch.FloatTensor([wanted_center_of_mass, wanted_center_of_mass]).cuda(), requires_grad=False)
self.loss = nn.MSELoss()
def forward(self, kernel):
"""Return the loss over the distance of center of mass from kernel center """
r_sum, c_sum = torch.sum(kernel, dim=1).reshape(1, -1), torch.sum(kernel, dim=0).reshape(1, -1)
return self.loss(torch.stack((torch.matmul(r_sum, self.indices) / torch.sum(kernel),
torch.matmul(c_sum, self.indices) / torch.sum(kernel))), self.center)
class BoundariesLoss(nn.Module):
""" Encourages sparsity of the boundaries by penalizing non-zeros far from the center """
def __init__(self, k_size):
super(BoundariesLoss, self).__init__()
self.mask = map2tensor(create_penalty_mask(k_size, 30))
self.zero_label = Variable(torch.zeros(k_size).cuda(), requires_grad=False)
self.loss = nn.L1Loss()
def forward(self, kernel):
return self.loss(kernel * self.mask, self.zero_label)
class SparsityLoss(nn.Module):
""" Penalizes small values to encourage sparsity """
def __init__(self):
super(SparsityLoss, self).__init__()
self.power = 0.2
self.loss = nn.L1Loss()
def forward(self, kernel):
return self.loss(torch.abs(kernel) ** self.power, torch.zeros_like(kernel))