-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
45 lines (35 loc) · 1.53 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
import torch
import torch.utils.data
import random
from PIL import Image
from glob import glob
import torchvision.transforms as transforms
import os
class ImageLowSemDataset(torch.utils.data.Dataset):
def __init__(self, img_dir, sem_dir):
self.low_img_dir = img_dir
self.sem_dir = sem_dir
self.low_img_names = []
self.sem_names = []
for name in os.listdir(self.low_img_dir):
if name.endswith('.jpg') or name.endswith('.png'):
self.low_img_names.append(os.path.join(self.low_img_dir, name))
self.sem_names.append(os.path.join(self.sem_dir, f'{os.path.splitext(name)[0]}_semantic.png'))
self.count = len(self.low_img_names)
transform_list = []
transform_list += [transforms.ToTensor()] # ToTensor()包含将数据规范到(0,1)
# transform_list += [transforms.Normalize((0, 0, 0), (255, 255, 255))]
self.transform = transforms.Compose(transform_list)
def load_images_transform(self, file):
im = Image.open(file).convert('RGB')
img_norm = self.transform(im)
return img_norm
def __getitem__(self, index):
low_img = self.load_images_transform(self.low_img_names[index])
sem = self.load_images_transform(self.sem_names[index])
img_name = os.path.basename(self.low_img_names[index])
sem_name = os.path.basename(self.sem_names[index])
return low_img, sem, img_name, sem_name
def __len__(self):
return self.count