-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
56 lines (45 loc) · 1.84 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import os
import cv2
from glob import glob
from tqdm import tqdm
from skimage.metrics import peak_signal_noise_ratio as compare_psnr
from skimage.metrics import structural_similarity as compare_ssim
import argparse
parser = argparse.ArgumentParser("enlighten-anything")
parser.add_argument('--test_dir', type=str, default='test_output', help='training data directory')
parser.add_argument('--test_gt_dir', type=str, default='data/LOL/test15/high', help='training data directory')
args = parser.parse_args()
def calc_psnr(im1, im2):
im1_y = cv2.cvtColor(im1, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
im2_y = cv2.cvtColor(im2, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
return compare_psnr(im1_y, im2_y)
def calc_ssim(im1, im2):
im1_y = cv2.cvtColor(im1, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
im2_y = cv2.cvtColor(im2, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
return compare_ssim(im1_y, im2_y)
def align_to_four(img):
a_row = int(img.shape[0]/4)*4
a_col = int(img.shape[1]/4)*4
img = img[0:a_row, 0:a_col, :]
return img
def evaluate_raindrop(in_dir, gt_dir):
inputs = sorted(glob(os.path.join(in_dir, '*.png')) + glob(os.path.join(in_dir, '*.jpg')))
gts = sorted(glob(os.path.join(gt_dir, '*.png')) + glob(os.path.join(gt_dir, '*.jpg')))
psnrs = []
ssims = []
for input, gt in tqdm(zip(inputs, gts)):
inputdata = cv2.imread(input)
gtdata = cv2.imread(gt)
inputdata = align_to_four(inputdata)
gtdata = align_to_four(gtdata)
psnrs.append(calc_psnr(inputdata, gtdata))
ssims.append(calc_ssim(inputdata, gtdata))
ave_psnr = np.array(psnrs).mean()
ave_ssim = np.array(ssims).mean()
return ave_psnr, ave_ssim
if __name__ == '__main__':
ave_psnr, ave_ssim = evaluate_raindrop(args.test_dir, args.test_gt_dir)
print('')
print('PSNR: ', ave_psnr)
print('SSIM: ', ave_ssim)