-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
597 lines (499 loc) · 29.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
#coding=utf-8
import argparse
import os
import time
import logging
import random
import torch
import torch.backends.cudnn as cudnn
import torch.optim
from torch.utils.data import DataLoader
import torch.nn as nn
import torchvision
from torchvision import datasets, transforms
import numpy as np
import models
from data import datasets
from data.sampler import CycleSampler
from data.data_utils import
from utils import Parser,criterions
from utils import lovasz_loss as lovasz
from predict import validate_softmax, AverageMeter
import sys
import ast
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from models import config
from loss import Losses, Loss_Region
import math
import gc
from data.transforms import *
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', default='DMFNet_GDL_all', type=str,
help='Your detailed configuration of the network')
parser.add_argument('--gpu', default='0,1', type=str, required=True,
help='Supprot one GPU & multiple GPUs.')
parser.add_argument('--seed', default='1024', type=int)
parser.add_argument('--restore', default='model_last.pth', type=str)
parser.add_argument('--train_data_dir', default='./data/MICCAI_BraTS2018_TrainingData_gz', type=str)
parser.add_argument('--valid_data_dir', default='./data/MICCAI_BraTS2018_ValidationData_gz', type=str)
parser.add_argument('--test_data_dir', default='./data/MICCAI_BraTS2018_TestingData_gz', type=str)
parser.add_argument('--train_list', default=['train_0.txt', 'train_1.txt', 'train_2.txt'], type=list)
parser.add_argument('--train_valid_list', default=['valid_0.txt', 'valid_1.txt', 'valid_2.txt'], type=list)
parser.add_argument('--valid_list', default=['valid.txt'], type=list)
# Training hyper-parameters:
parser.add_argument('--criterion', choices=['sigmoid_dice_loss', 'softmax_dice_loss', 'FocalLoss'], default='sigmoid_dice_loss', type=str)
parser.add_argument('--num_epochs', default='400', type=float)
parser.add_argument('--valid_freq', default='5', type=float)
parser.add_argument('--save_freq', default='20', type=float)
parser.add_argument('--start_iter', default='0', type=int)
parser.add_argument('--workers', default=8, type=int)
parser.add_argument('--output_set', choices=['train_val','val','test'], default='val', type=str) # [train_val,val,test] as output of submission
parser.add_argument('--batch_size', default=2, type=int, help='Batch size')
parser.add_argument('--opt', default='Adam', type=str)
parser.add_argument('--lr', default='3e-4', type=float) # 1e-3
parser.add_argument('--warmup_epoch', default='20', type=float) # Warm-up for learning rate
parser.add_argument('--weight_decay', default='1e-5', type=float)
parser.add_argument('--amsgrad', default=True, type=bool)
parser.add_argument('--weight_type', default='square', type=str)
parser.add_argument('--eps', default=1e-5, type=float)
parser.add_argument('--dataset', choices=['BraTSDataset'], default='BraTSDataset', type=str) # RandCrop3D((128,128,128)), \ 112,112,112
parser.add_argument('--train_transforms', default='Compose([ \
RandCrop3D((128,128,128)), \
RandomRotion(10), \
RandomIntensityChange((0.1,0.1)), \
RandomFlip(0), \
NumpyType((np.float32, np.int64)), \
])', type=str)
parser.add_argument('--test_transforms', default='Compose([ \
Pad((0, 16, 16, 5, 0)), \
NumpyType((np.float32, np.int64)), \
])', type=str) ### Only if args.net=='U2net' and config.num_pool_per_axis=[5,5,5], Pad-16
parser.add_argument('--setting', default='None', type=str) # summary of all setting you want to record, to save as the name of logs
# Hyper-parameters of the Networks:
parser.add_argument('--net', default='DisenNet', choices=['DMFNet','Unet','U2net3d','DisenNet'], type=str) # name of the used networks
parser.add_argument('--in_channels', default='4', type=int)
parser.add_argument('--channels1', default='32', type=int)
parser.add_argument('--channels2', default='128', type=int) # 128
parser.add_argument('--groups', default='16', type=int) # 16
parser.add_argument('--norm', default='sync_bn', type=str)
parser.add_argument('--num_classes', default='4', type=int)
parser.add_argument('--unet_filter_num_list', default=[8,16,32,48,64], type=list) #ori:[16,32,48,64,96] or small:[8,16,32,48,64]
# Hyper-parameters for U2Net:
parser.add_argument('--use_lovasz', default=False, type=ast.literal_eval) #bool
parser.add_argument('--use_snapshot_ensemble', default=False, type=ast.literal_eval) #bool
parser.add_argument('--smooth_label', default=False, type=ast.literal_eval) #bool
parser.add_argument('--use_focal_loss', default=False, type=ast.literal_eval) #bool
parser.add_argument('--vis_badcase', default=False, type=ast.literal_eval) #bool
parser.add_argument('--R_loss', default=False, type=ast.literal_eval) #bool
parser.add_argument('--loss_balance', default=False, type=ast.literal_eval) #bool
parser.add_argument('--duration', default='20', type=int) #bool
parser.add_argument('--u2net_inchann', default=8, type=int) # Only for U2net3d, the in_channel_num
parser.add_argument('--valid_submission_only', default=False, type=ast.literal_eval) #bool
# Hyper-paremeters for DisenNet:
parser.add_argument('--DisenNet_indim', default=2, type=int) # 2/4
parser.add_argument('--AuxDec_dim', default=2, type=int) # 2/1
parser.add_argument('--recon_w', default=1, type=float) # [2, 1, 0.5, 0.1]
parser.add_argument('--kl_w', default=1, type=float) # [2, 1, 0.5, 0.1]
parser.add_argument('--use_distill', default=True, type=ast.literal_eval) #bool
parser.add_argument('--use_contrast', default=True, type=ast.literal_eval) #bool
parser.add_argument('--contrast_w', default=1, type=float) # [2, 1, 0.5, 0.1]
parser.add_argument('--use_style_map', default=True, type=ast.literal_eval) #bool
parser.add_argument('--style_dim', default=16, type=int) # 8, dim of style vector
# Missing Modality Setting:
parser.add_argument('--miss_modal', default=False, type=ast.literal_eval) #bool
parser.add_argument('--use_Bernoulli_train', default=False, type=ast.literal_eval) #bool
parser.add_argument('--use_kd', default=False, type=ast.literal_eval) # Use knowledge distillation (Fea+Logit KD)
parser.add_argument('--fea_dim', default='8', type=int) # dim of feature of Decoder to be distilled
parser.add_argument('--kd_logit_w', default=1, type=float) # [30, 10, 1, 0.1]
parser.add_argument('--kd_fea_w', default=1, type=float) # [2, 1, 0.5, 0.1]
parser.add_argument('--kd_fea_channel_w', default=1, type=float) # # [2, 1, 0.5, 0.1]
parser.add_argument('--kd_channel_attn', default=False, type=ast.literal_eval) #bool Like the paper by chunhua shen
parser.add_argument('--kd_dense_fea_attn', default=False, type=ast.literal_eval) #bool our novel calculation on each feature map's dense channel
parser.add_argument('--affinity_kd', default=False, type=ast.literal_eval) #bool the affinity kd loss
parser.add_argument('--self_distill', default=False, type=ast.literal_eval) #bool
parser.add_argument('--self_distill_logit_w', default=1, type=float) # [5, 1, 0.5, 0.1]
parser.add_argument('--self_distill_fea_w', default=1, type=float) # [2, 1, 0.5, 0.1]
parser.add_argument('--use_freq_map', default=False, type=ast.literal_eval) # Frequency
parser.add_argument('--use_freq_channel', default=False, type=ast.literal_eval) # Frequency, band-pass filter
parser.add_argument('--freq_w', default=1, type=float) # # [2, 1, 0.5, 0.1]
parser.add_argument('--use_freq_contrast', default=False, type=ast.literal_eval) # Frequency (simple), as part of constrastive loss
parser.add_argument('--saveroot', default='./fig/seg_result_save', type=str)# root_path of saving logs
path = os.path.dirname(__file__)
args = parser.parse_args()
args = Parser(args.cfg, log='train').add_args(args)
ckpts = args.makedir()
args.resume = None
val_log_savepath = os.path.join(args.saveroot,'trainval_log_'+args.net+'_'+args.criterion+'_'+args.output_set+'_output_'+args.setting+'.txt')
val_submission_savepath = os.path.join(args.saveroot,'submission/'+args.net+'_'+args.criterion+'_'+args.output_set+'_output_'+args.setting)
val_model_savepath = './ckpts/'+args.net
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
assert torch.cuda.is_available(), "Currently, we only support CUDA version"
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
Network = getattr(models, args.net)
if args.net == 'DMFNet':
model = Network(in_channels=args.in_channels, channels1=args.channels1, channels2=args.channels2, groups=args.groups,
norm=args.norm, num_classes=args.num_classes)
elif args.net == 'Unet':
model = Network(filter_num_list=args.unet_filter_num_list, \
)
elif args.net == 'U2net3d':
model = Network(inChans_list=[4], base_outChans=args.u2net_inchann, num_class_list=[4], args=args)
elif args.net == 'DisenNet':
model = Network(base_outChans=args.DisenNet_indim, args=args)
else:
print ('Error: This network has not been implemented!')
model = torch.nn.DataParallel(model).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr*args.batch_size, weight_decay=args.weight_decay) #
criterion = getattr(criterions, args.criterion)
if args.dataset == 'BraTSDataset':
num_fold = 3
for cv_idx in range(num_fold): # Cross-Validation with 3-fold
if args.net == 'U2net3d':
if args.dataset == 'BraTSDataset':
model = Network(inChans_list=[4], base_outChans=args.u2net_inchann, num_class_list=[4], args=args)
elif args.net == 'DisenNet':
if args.dataset == 'BraTSDataset':
model = Network(inChans_list=[4], base_outChans=args.DisenNet_indim, num_class_list=[4], args=args)
model = torch.nn.DataParallel(model).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr*args.batch_size, weight_decay=args.weight_decay) #
with open(val_log_savepath,'a') as f:
f.write('Start time is: %s \n' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())))
f.write('---------------------Structure of Network------------------------\n')
f.write(str(model))
f.write('\n')
f.write('---------------------Setting of the model------------------------\n')
f.write(str(args))
f.write('\n')
f.write('---------------------------------------------------------------\n')
msg = ' \n'
if args.resume and args.valid_submission_only:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_iter = checkpoint['iter']
net_dict = model.state_dict()
pretrain_dict = {k: v for k, v in checkpoint['state_dict'].items() if k in net_dict.keys()}
net_dict.update(pretrain_dict)
model.load_state_dict(net_dict)
msg = ("=> loaded checkpoint '{}' (iter {})"
.format(args.resume, checkpoint['iter']))
else:
msg = "=> no checkpoint found at '{}'".format(args.resume)
else:
msg = '-------------- New training session ----------------\n'
msg += str(args)
logging.info(msg)
Dataset = getattr(datasets, args.dataset) #
para_num = count_parameters(model)
print ('The number of parameters of the model are: %f' % para_num)
print ('-----------The %d-th iterations of the Cross-Validation training starts--------\n'% (cv_idx+1))
if args.dataset == 'BraTSDataset':
train_list = os.path.join('./data/MICCAI_BraTS2018_txt/train/', args.train_list[cv_idx])
train_set = Dataset(train_list, root=args.train_data_dir, for_train=True,
transforms=args.train_transforms)
print ('Length of training sets:')
print (len(train_set))
num_iters = (len(train_set) * args.num_epochs) // args.batch_size
num_iters -= args.start_iter
train_sampler = CycleSampler(len(train_set), num_iters*args.batch_size)
train_loader = DataLoader(
train_set,
batch_size=args.batch_size,
collate_fn=train_set.collate, sampler=train_sampler,
num_workers=args.workers, pin_memory=True, worker_init_fn=init_fn)
if args.train_valid_list:
if args.dataset == 'BraTSDataset':
train_valid_list = os.path.join('./data/MICCAI_BraTS2018_txt/train/', args.train_valid_list[cv_idx])
train_valid_set = Dataset(train_valid_list,
root=args.train_data_dir,
for_train=False,
transforms=args.test_transforms)
train_valid_loader = DataLoader(
train_valid_set,
batch_size=1,
shuffle=False,
collate_fn=train_valid_set.collate,
num_workers=4,
pin_memory=True)
valid_loader = None
valid_loader = train_valid_loader
if args.valid_list and args.dataset == 'BraTSDataset':
train_valid_list = os.path.join('./data/MICCAI_BraTS2018_txt/train', args.train_valid_list[cv_idx])
valid_list = './data/MICCAI_BraTS2018_txt/valid/valid.txt'
test_list = './data/MICCAI_BraTS2018_txt/test/test.txt'
if args.output_set == 'train_val':
data_list = train_valid_list
input_data_dir = args.train_data_dir
if args.output_set == 'val':
data_list = valid_list
input_data_dir = args.valid_data_dir
if args.output_set == 'test':
data_list = test_list
input_data_dir = args.test_data_dir
valid_set = Dataset(data_list, # [train_valid_list, test_list, valid_list]
root=input_data_dir, # [train_data_dir, valid_data_dir, test_data_dir]
for_train=False,
transforms=args.test_transforms, true_valid_data=True)
valid_loader = DataLoader(
valid_set,
batch_size=1,
shuffle=False,
collate_fn=valid_set.collate,
num_workers=4,
pin_memory=True)
start = time.time()
enum_batches = len(train_set)/float(args.batch_size) # nums_batch per epoch
args.schedule = {int(k*enum_batches): v for k, v in args.schedule.items()} # 17100
args.save_freq = int(enum_batches * args.save_freq)
losses = AverageMeter()
torch.set_grad_enabled(True)
avg_cost = np.zeros([int(num_iters//args.duration)+1, 2]) # duration=30, For balancing two losses of edge and seg branch
for i, data in enumerate(train_loader, args.start_iter):
gc.collect()
torch.cuda.empty_cache()
elapsed_bsize = int( i / enum_batches)+1
epoch = int((i + 1) / enum_batches)
if args.use_snapshot_ensemble:
snapshot_ensemble_lr(optimizer,epoch)
else:
adjust_learning_rate(optimizer, epoch, args.num_epochs, args.lr*args.batch_size, warmup_epoch=args.warmup_epoch, lr_min=1e-8, _type='exp') # Or original: 'exp' or 'CosineAnnealing'
data = [t.cuda(non_blocking=True) for t in data]
x, target = data[:2]
edge_label = None
if args.net == 'U2net3d':
if config.trainMode in ["universal"]:
output, share_map, para_map, deep_sup_fea = model(x)
if config.deep_supervision:
feature_maps = [deep_sup_fea[i1] for i1 in range(config.num_pool_per_axis[0]-2)]
feature_maps.append(output)
else:
feature_maps = [output]
else:
output = model(x)
total_seg_loss = 0.0
weights = np.array([1 / (2 ** i2) for i2 in range(4)]) # weights=[1/2, 1/4, 1/8, 1/16] according to the size of 4 feature maps
weights = weights / weights.sum()
for iii, feature_map in enumerate(feature_maps):
b,c,h,w,d = feature_map.shape
b1,h1,w1,d1 = target.shape
if d != d1:
_target = nn.MaxPool3d(int(h1/h), stride=int(h1/h))(target.float())
_target = _target.long()
else:
_target = target
_loss = Losses()
ori_loss = _loss(feature_map, _target, datasets=args.dataset, use_dice=True, ce=True, focal=True, iou=False, use_lovasz=False, use_TverskyLoss=False)
if args.R_loss:
_region_loss = Loss_Region()
region_loss = _region_loss(feature_map, _target, use_dice=True, bce=True)
sum_loss = ori_loss + region_loss
else:
sum_loss = ori_loss
total_seg_loss += sum_loss * weights[-1-iii]
loss = total_seg_loss
print ('Total loss: %f'%loss.item())
elif args.net == 'DisenNet':
if args.miss_modal == True and args.use_Bernoulli_train == True:
random_miss = np.random.binomial(n=1,p=0.5,size=4)
miss_list = [x[:,i,...]*random_miss[i] for i in range(4)]
# reconstruction for all modalities MRI:
complete_x = x
x = torch.cat([torch.unsqueeze(miss_list[0],1),torch.unsqueeze(miss_list[1],1),torch.unsqueeze(miss_list[2],1),torch.unsqueeze(miss_list[3],1)],1)
seg_out, binary_seg_out_all, deep_sup_fea, weight_recon_loss, weight_kl_loss, weight_recon_c_loss, weight_recon_s_loss, distill_loss, kd_loss, contrastive_loss, freq_loss, seg_aux = model(x,complete_x,is_test=False) ### deep_sup_fea: [bs,4,16/32/64,...], len=3
if config.deep_supervision:
feature_maps = [deep_sup_fea[i1] for i1 in range(0,config.num_pool_per_axis[0]-2)] # 1
feature_maps.append(binary_seg_out_all)
feature_maps.append(seg_aux)
feature_maps.append(seg_out)
else:
feature_maps = [seg_aux]
feature_maps.append(binary_seg_out_all)
feature_maps.append(seg_out)
total_seg_loss = 0.0
if config.deep_supervision:
weights = np.array([1,0.5,0.5])
weights = np.append(weights,[1 / (2 ** (i2+1)) for i2 in range(config.num_pool_per_axis[0]-2-1, -1, -1)])
weights = weights / weights.sum()
else:
weights = np.array([1,0.5,0.5])
weights = weights / weights.sum()
for iii, feature_map in enumerate(feature_maps):
b,c,h,w,d = feature_map.shape
b1,h1,w1,d1 = target.shape
if d != d1:
_target = nn.MaxPool3d(int(h1/h), stride=int(h1/h))(target.float())
_target = _target.long()
else:
_target = target
_loss = Losses()
ori_loss = _loss(feature_map, _target, datasets=args.dataset, use_dice=True, ce=True, focal=False, iou=False, use_lovasz=False, use_TverskyLoss=False)
if args.R_loss:
_region_loss = Loss_Region()
region_loss = _region_loss(feature_map, _target, use_dice=True, bce=True)
sum_loss = ori_loss + region_loss
else:
sum_loss = ori_loss
print ('Aux/Binary/Main Seg loss: %f'%((sum_loss.item() * weights[-1-iii])))
total_seg_loss += sum_loss * weights[-1-iii]
kd_logit_loss = kd_loss[0]
kd_fea_loss = kd_loss[1]
loss = total_seg_loss + weight_recon_loss.mean() + weight_kl_loss.mean() + distill_loss.mean() + kd_logit_loss.mean() + kd_fea_loss.mean() + contrastive_loss.mean() + freq_loss.mean()
print ('Seg loss: %f, Recon loss: %f, KL loss: %f, Distill loss: %f, KD_logit_loss: %f, KD_fea_loss: %f, Contrast loss: %f, Freq loss: %f, Total loss: %f'%(total_seg_loss.item(),weight_recon_loss.mean().item(),weight_kl_loss.mean().item(), distill_loss.mean().item(), kd_logit_loss.mean().item(), kd_fea_loss.mean().item(), contrastive_loss.mean().item(),freq_loss.mean(),loss.item()))
else:
output = model(x)
_loss = Losses()
loss = _loss(output, target, use_dice=True, ce=True, focal=True, iou=False, use_lovasz=False, use_TverskyLoss=False)
print ('Loss is: %f'%loss.item())
if not args.weight_type: # compatible for the old version
args.weight_type = 'square'
# measure accuracy and record loss
losses.update(loss.item(), target.numel())
# compute gradient and do SGD step
if args.valid_submission_only:
loss = loss * 0
optimizer.zero_grad()
loss.backward()
optimizer.step()
# validation and save, when get the best sum(dice-score) among before
if epoch < 300:
if args.dataset == 'BraTSDataset':
_valid_freq = args.valid_freq * 4
else:
_valid_freq = args.valid_freq
else:
_valid_freq = args.valid_freq
if (i+1) % int(enum_batches * _valid_freq) == 0\
or (i+1) % int(enum_batches * (args.num_epochs -1))==0\
or (i+1) % int(enum_batches * (args.num_epochs -2))==0\
or (i+1) % int(enum_batches * (args.num_epochs -3))==0\
or (i+1) % int(enum_batches * (args.num_epochs -4))==0:
logging.info('-'*50)
msg = 'Validation: Iter {}, Epoch {:.4f}, {}'.format(i, i/enum_batches, 'validation')
logging.info(msg)
del data, target, loss
torch.cuda.empty_cache()
with torch.no_grad():
if (i+1) // int(enum_batches * _valid_freq) == 1 or args.valid_submission_only == True:
torch.cuda.empty_cache()
best_dice_score_sum = 0.0
vals_dice_scores = validate_softmax(
train_valid_loader,
valid_loader,
model, #cpu_model,
net=args.net,
args=args, ##
log_savepath=val_log_savepath, #args.savepath,
submission_savepath=val_submission_savepath,
names=train_valid_set.names,
scoring=True,
verbose=False, #False
use_TTA=True, #False,
save_format='nii',
snapshot=False, # False
postprocess=True, #False,
cpu_only=False,
epoch_id=int((i + 1) / enum_batches),
best_dice_score_sum=0.0
)
else:
if vals_dice_scores.sum() > best_dice_score_sum:
best_dice_score_sum = vals_dice_scores.sum()
vals_dice_scores = validate_softmax(
train_valid_loader,
valid_loader,
model,
net=args.net,
args=args,
log_savepath=val_log_savepath, # args.savepath,
submission_savepath=val_submission_savepath,
names=train_valid_set.names,
scoring=True,
verbose=False, # False
use_TTA=True, # False,
save_format='nii',
snapshot=False, # False
postprocess=True, # False,
cpu_only=False,
epoch_id=int(i/enum_batches),
best_dice_score_sum=best_dice_score_sum # vals_dice_scores.sum()
)
if vals_dice_scores.sum() > best_dice_score_sum and int(i/enum_batches) > 50: # vals_dice_scores.mean() > 0.83: #2.0:
file_name = os.path.join(val_model_savepath, args.setting+'_'+str(vals_dice_scores.mean())+'_model_epoch_{}.pth'.format(epoch))
torch.save({
'iter': i+1,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict(),
},
file_name)
if i % 100 == 0:
msg = 'Iter {0:}, Epoch {1:.4f}, Loss {2:.7f}'.format(
i, (i+1)/enum_batches, losses.avg)
logging.info(msg)
losses.reset()
i = num_iters + args.start_iter
file_name = os.path.join(val_model_savepath, args.setting+'model_last.pth')
torch.save({
'iter': i,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict(),
},
file_name)
msg = 'total time: {:.4f} minutes'.format((time.time() - start)/60)
logging.info(msg)
def adjust_learning_rate(optimizer, epoch, MAX_EPOCHES, INIT_LR, power=0.9, warmup_epoch=20, lr_min=1e-8, _type='exp', use_warmup=False):
lr_max = INIT_LR
if use_warmup:
if _type == 'exp':
if epoch >= warmup_epoch:
lr = round(INIT_LR * np.power( 1 - (epoch) / MAX_EPOCHES ,power),8)
else:
lr = round(INIT_LR * np.power( 1 - (epoch) / MAX_EPOCHES ,power),8) * epoch / warmup_epoch
else:
if epoch >= warmup_epoch:
lr = lr_min + (lr_max - lr_min) * (1 + math.cos(math.pi * epoch / MAX_EPOCHES)) / 2 # Cosine Annealing
else:
lr = lr_min + (lr_max - lr_min) * (1 + math.cos(math.pi * epoch / MAX_EPOCHES)) / 2 * epoch / warmup_epoch
else:
if _type == 'exp':
lr = round(INIT_LR * np.power( 1 - (epoch) / MAX_EPOCHES ,power),8)
else:
lr = lr_min + (lr_max - lr_min) * (1 + math.cos(math.pi * epoch / MAX_EPOCHES)) / 2
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def snapshot_ensemble_lr(optimizer, epoch, CYCLE=4, LR_INIT=0.001, LR_MIN=0.0001):
scheduler = lambda x: ((LR_INIT-LR_MIN)/2)*(np.cos(np.pi*(np.mod(x-1,CYCLE)/(CYCLE)))+1)+LR_MIN
for param_group in optimizer.param_groups:
param_group['lr'] = scheduler(epoch)
def bce_loss(prediction, label, smooth_label=False):
label = label.long()
mask = label.float()
if smooth_label:
num_positive = torch.sum((mask!=0).float()).float()
num_negative = torch.sum((mask==0).float()).float()
mask[mask > 0] = 1.0 * num_negative / (num_positive + num_negative)
mask[mask == 0] = 1.1 * num_positive / (num_positive + num_negative)
else:
num_positive = torch.sum((mask==1).float()).float()
num_negative = torch.sum((mask==0).float()).float()
mask[mask == 1] = 1.0 * num_negative / (num_positive + num_negative)
mask[mask == 0] = 1.1 * num_positive / (num_positive + num_negative)
mask[mask == 2] = 0
cost = torch.nn.functional.binary_cross_entropy(prediction.float(),label.float(), weight=mask, reduce=False)
return torch.sum(cost) / (num_positive+1e-6)
def weighted_mse_loss(prediction, label, smooth_label=True):
mask = label.float()
num_positive = torch.sum((mask!=0).float()).float()
num_negative = torch.sum((mask==0).float()).float()
mask[mask != 0] = 1.0 * num_negative / (num_positive + num_negative)
mask[mask == 0] = 1.1 * num_positive / (num_positive + num_negative)
loss = torch.nn.functional.mse_loss(prediction.float(),label.float(),reduce=False, size_average=False)
return torch.sum(loss) / (num_positive+1e-4)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
if __name__ == '__main__':
main()