forked from VinAIResearch/HyperInverter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment_setting_creator.py
83 lines (71 loc) · 2.95 KB
/
experiment_setting_creator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import glob
import os
import pickle
import sys
sys.path.append(".")
sys.path.append("..")
import torch # noqa: E402
from configs import paths_config # noqa: E402
from evaluation.latent_creators import ( # noqa: E402
E4ELatentCreator,
HyperInverterLatentCreator,
PSPLatentCreator,
ReStyle_E4ELatentCreator,
SG2LatentCreator,
SG2PlusLatentCreator,
WEncoderLatentCreator,
)
from models.stylegan2_ada import Generator # noqa: E402
from utils.common import toogle_grad # noqa: E402
class ExperimentRunner:
def __init__(self, args):
self.args = args
self.images_paths = sorted(glob.glob(f"{self.args.input_data_dir}/*"))
self.target_paths = sorted(glob.glob(f"{self.args.input_data_dir}/*"))
self.sampled_ws = None
# Load pretrained Generator
if self.args.domain == "human_faces":
model_path = paths_config.model_paths["stylegan2_ada_ffhq"]
elif self.args.domain == "churches":
model_path = paths_config.model_paths["stylegan2_ada_church"]
else:
raise Exception("Not defined!")
print(f"Load generator from {model_path}")
with open(model_path, "rb") as f:
G = pickle.load(f)["G_ema"]
G = G.float()
self.G = Generator(**G.init_kwargs)
self.G.load_state_dict(G.state_dict())
self.G.cuda().eval()
toogle_grad(self.G, False)
def run_experiment(self):
for method in self.args.methods:
if method == "psp":
latent_creator = PSPLatentCreator(domain=self.args.domain)
latent_creator.create_latents(self.args)
elif method == "e4e":
latent_creator = E4ELatentCreator(domain=self.args.domain)
latent_creator.create_latents(self.args)
elif method == "SG2_plus":
latent_creator = SG2PlusLatentCreator(G=self.G, domain=self.args.domain)
latent_creator.create_latents(self.args)
elif method == "SG2":
latent_creator = SG2LatentCreator(G=self.G, domain=self.args.domain)
latent_creator.create_latents(self.args)
elif method == "w_encoder":
latent_creator = WEncoderLatentCreator(domain=self.args.domain)
latent_creator.create_latents(self.args)
elif method == "hyper_inverter":
latent_creator = HyperInverterLatentCreator(domain=self.args.domain)
latent_creator.create_latents(self.args)
elif method == "restyle_e4e":
latent_creator = ReStyle_E4ELatentCreator(domain=self.args.domain)
latent_creator.create_latents(self.args)
else:
raise ("Not implemented!")
torch.cuda.empty_cache()
if __name__ == "__main__":
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = 1
runner = ExperimentRunner()
runner.run_experiment(True)