-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
56 lines (47 loc) · 1.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright 2018 Timur Sokhin.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from keras.datasets import imdb
import neuvol
def main():
(x_train, y_train), (x_test, y_test) = imdb.load_data(
path="imdb.npz",
num_words=30000,
skip_top=0,
maxlen=100,
seed=113,
start_char=1,
oov_char=2,
index_from=3)
evaluator = neuvol.Evaluator(x_train, y_train, kfold_number=1)
mutator = neuvol.Mutator()
evaluator.create_tokens = False
evaluator.fitness_measure = 'f1'
options = {'classes': 2, 'shape': (100,), 'depth': 4}
wop = neuvol.evolution.Evolution(
stages=10,
population_size=10,
evaluator=evaluator,
mutator=mutator,
data_type='text',
task_type='classification',
active_distribution=True,
freeze=None,
**options)
wop.cultivate()
for individ in wop.population_raw_individ:
print('Architecture: \n')
print(individ.schema)
print('\nScore: ', individ.result)
if __name__ == "__main__":
main()