-
Notifications
You must be signed in to change notification settings - Fork 57
/
lrTest-ZlmFit-character-method.Rd
40 lines (38 loc) · 1.88 KB
/
lrTest-ZlmFit-character-method.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ZlmFit.R
\name{lrTest,ZlmFit,character-method}
\alias{lrTest,ZlmFit,character-method}
\title{Likelihood ratio test}
\usage{
\S4method{lrTest}{ZlmFit,character}(object, hypothesis, ...)
}
\arguments{
\item{object}{ZlmFit}
\item{hypothesis}{See Details}
\item{...}{
Arguments passed on to \code{\link[=zlm]{zlm}}
\describe{
\item{\code{formula}}{a formula with the measurement variable on the LHS and predictors present in colData on the RHS}
\item{\code{sca}}{SingleCellAssay object}
\item{\code{method}}{character vector, either 'glm', 'glmer' or 'bayesglm'}
\item{\code{silent}}{Silence common problems with fitting some genes}
\item{\code{ebayes}}{if TRUE, regularize variance using empirical bayes method}
\item{\code{ebayesControl}}{list with parameters for empirical bayes procedure. See \link{ebayes}.}
\item{\code{force}}{Should we continue testing genes even after many errors have occurred?}
\item{\code{hook}}{a function called on the \code{fit} after each gene.}
\item{\code{parallel}}{If TRUE and \code{option(mc.cores)>1} then multiple cores will be used in fitting.}
\item{\code{LMlike}}{if provided, then the model defined in this object will be used, rather than following the formulas. This is intended for internal use.}
\item{\code{onlyCoef}}{If TRUE then only an array of model coefficients will be returned (probably only useful for bootstrapping).}
\item{\code{exprs_values}}{character or integer passed to `assay` specifying which assay to use for testing}
}}
}
\value{
3D array
}
\description{
A 3D array with first dimension being the genes,
next dimension giving information about the test
(the degrees of freedom, Chisq statistic, and P value), and final dimension
being the value of these quantities on the
discrete, continuous and hurdle (combined) levels.
}