-
Notifications
You must be signed in to change notification settings - Fork 8
/
category_util.py
77 lines (61 loc) · 2.45 KB
/
category_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for importing/exporting Object Detection categories."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import tensorflow as tf
def load_categories_from_csv_file(csv_path):
"""Loads categories from a csv file.
The CSV file should have one comma delimited numeric category id and string
category name pair per line. For example:
0,"cat"
1,"dog"
2,"bird"
...
Args:
csv_path: Path to the csv file to be parsed into categories.
Returns:
categories: A list of dictionaries representing all possible categories.
The categories will contain an integer 'id' field and a string
'name' field.
Raises:
ValueError: If the csv file is incorrectly formatted.
"""
categories = []
with tf.gfile.Open(csv_path, 'r') as csvfile:
reader = csv.reader(csvfile, delimiter=',', quotechar='"')
for row in reader:
if not row:
continue
if len(row) != 2:
raise ValueError('Expected 2 fields per row in csv: %s' % ','.join(row))
category_id = int(row[0])
category_name = row[1]
categories.append({'id': category_id, 'name': category_name})
return categories
def save_categories_to_csv_file(categories, csv_path):
"""Saves categories to a csv file.
Args:
categories: A list of dictionaries representing categories to save to file.
Each category must contain an 'id' and 'name' field.
csv_path: Path to the csv file to be parsed into categories.
"""
categories.sort(key=lambda x: x['id'])
with tf.gfile.Open(csv_path, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter=',', quotechar='"')
for category in categories:
writer.writerow([category['id'], category['name']])