-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFTRL_CTR_prediction.py
311 lines (232 loc) · 9.08 KB
/
FTRL_CTR_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from datetime import datetime
from csv import DictReader
from math import exp, log, sqrt
# TL; DR, the main training process starts on line: 282,
# you may want to start reading the code from there
##############################################################################
# parameters #################################################################
##############################################################################
# A, paths
train = '/home/luke/Documents/MachineLearning/DATA/CTR/train' # path to training file
test = '/home/luke/Documents/MachineLearning/DATA/CTR/test' # path to test file
submission = '/home/luke/Documents/MachineLearning/DATA/CTR/submission1.0' # path to output
# B, model
alpha = .1 # learning rate
beta = 1. # smoothing parameter for adaptive learning rate
L1 = 1. # L1 regularization, larger value means more regularized
L2 = 1. # L2 regularization, larger value means more regularized
# C, feature/hash trick
D = 2 ** 20 # number of weights to use
do_interactions = False # whether to enable poly2 feature interactions
# D, training/validation
epoch = 1 # learn training data for N passes
holdout = 100 # use every N training instance for holdout validation
##############################################################################
# class, function, generator definitions #####################################
##############################################################################
# each class below is a learning algorithm
class logistic_regression(object):
''' Classical logistic regression
This class (algorithm) is not used in this code, it is putted here
for a quick reference in hope to make the following (more complex)
algorithm more understandable.
'''
def __init__(self, alpha, D, interaction=False):
# parameters
self.alpha = alpha
# model
self.w = [0.] * D
def predict(self, x):
# parameters
alpha = self.alpha
# model
w = self.w
# wTx is the inner product of w and x
wTx = sum(w[i] for i in x)
# bounded sigmoid function, this is the probability of being clicked
return 1. / (1. + exp(-max(min(wTx, 35.), -35.)))
def update(self, x, p, y):
# parameter
alpha = self.alpha
# model
w = self.w
# gradient under logloss
g = p - y
# update w
for i in x:
w[i] += g * alpha
class ftrl_proximal(object):
''' Our main algorithm: Follow the regularized leader - proximal
In short,
this is an adaptive-learning-rate sparse logistic-regression with
efficient L1-L2-regularization
Reference:
http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
'''
def __init__(self, alpha, beta, L1, L2, D, interaction=False):
# parameters
self.alpha = alpha
self.beta = beta
self.L1 = L1
self.L2 = L2
# feature related parameters
self.D = D
self.interaction = interaction
# model
# n: squared sum of past gradients
# z: weights
# w: lazy weights
self.n = [0.] * D
self.z = [0.] * D
self.w = [0.] * D # use this for execution speed up
# self.w = {} # use this for memory usage reduction
def _indices(self, x):
''' A helper generator that yields the indices in x
The purpose of this generator is to make the following
code a bit cleaner when doing feature interaction.
'''
for i in x:
yield i
if self.interaction:
D = self.D
L = len(x)
for i in xrange(1, L): # skip bias term, so we start at 1
for j in xrange(i + 1, L):
yield (i * j) % D
def predict(self, x):
''' Get probability estimation on x
INPUT:
x: features
OUTPUT:
probability of p(y = 1 | x; w)
'''
# parameters
alpha = self.alpha
beta = self.beta
L1 = self.L1
L2 = self.L2
# model
n = self.n
z = self.z
w = self.w # use this for execution speed up
# w = {} # use this for memory usage reduction
# wTx is the inner product of w and x
wTx = 0.
for i in self._indices(x):
sign = -1. if z[i] < 0 else 1. # get sign of z[i]
# build w on the fly using z and n, hence the name - lazy weights -
if sign * z[i] <= L1:
# w[i] vanishes due to L1 regularization
w[i] = 0.
else:
# apply prediction time L1, L2 regularization to z and get w
w[i] = (sign * L1 - z[i]) / ((beta + sqrt(n[i])) / alpha + L2)
wTx += w[i]
self.w = w
# bounded sigmoid function, this is the probability estimation
return 1. / (1. + exp(-max(min(wTx, 35.), -35.)))
def update(self, x, p, y):
''' Update model using x, p, y
INPUT:
x: feature, a list of indices
p: click probability prediction of our model
y: answer
MODIFIES:
self.n: increase by squared gradient
self.z: weights
'''
# parameter
alpha = self.alpha
# model
n = self.n
z = self.z
w = self.w # no need to change this, it won't gain anything
# gradient under logloss
g = p - y
# update z and n
for i in self._indices(x):
sigma = (sqrt(n[i] + g * g) - sqrt(n[i])) / alpha
z[i] += g - sigma * w[i]
n[i] += g * g
def logloss(p, y):
''' FUNCTION: Bounded logloss
INPUT:
p: our prediction
y: real answer
OUTPUT:
logarithmic loss of p given y
'''
p = max(min(p, 1. - 10e-15), 10e-15)
return -log(p) if y == 1. else -log(1. - p)
def data(path, D):
''' GENERATOR: Apply hash-trick to the original csv row
and for simplicity, we one-hot-encode everything
INPUT:
path: path to training or testing file
D: the max index that we can hash to
YIELDS:
ID: id of the instance, mainly useless
x: a list of hashed and one-hot-encoded 'indices'
we only need the index since all values are either 0 or 1
y: y = 1 if we have a click, else we have y = 0
'''
for t, row in enumerate(DictReader(open(path))):
# process id
ID = row['id']
del row['id']
# process clicks
y = 0.
if 'click' in row:
if row['click'] == '1':
y = 1.
del row['click']
# turn hour really into hour, it was originally YYMMDDHH
row['hour'] = row['hour'][6:]
# build x
x = [0] # 0 is the index of the bias term
for key in sorted(row): # sort is for preserving feature ordering
value = row[key]
# one-hot encode everything with hash trick
index = abs(hash(key + '_' + value)) % D
x.append(index)
yield t, ID, x, y
##############################################################################
# start training #############################################################
##############################################################################
start = datetime.now()
# initialize ourselves a learner
learner = ftrl_proximal(alpha, beta, L1, L2, D, interaction=do_interactions)
# start training
for e in xrange(epoch):
loss = 0.
count = 0
for t, ID, x, y in data(train, D): # data is a generator
# t: just a instance counter
# ID: id provided in original data
# x: features
# y: label (click)
# step 1, get prediction from learner
p = learner.predict(x)
if t % holdout == 0:
# step 2-1, calculate holdout validation loss
# we do not train with the holdout data so that our
# validation loss is an accurate estimation of
# the out-of-sample error
loss += logloss(p, y)
count += 1
else:
# step 2-2, update learner with label (click) information
learner.update(x, p, y)
if t % 2500000 == 0 and t > 1:
print(' %s\tencountered: %d\tcurrent logloss: %f' % (
datetime.now(), t, loss / count))
print('Epoch %d finished, holdout logloss: %f, elapsed time: %s' % (
e, loss / count, str(datetime.now() - start)))
##############################################################################
# start testing, and build Kaggle's submission file ##########################
##############################################################################
with open(submission, 'w') as outfile:
outfile.write('id,click\n')
for t, ID, x, y in data(test, D):
p = learner.predict(x)
outfile.write('%s,%s\n' % (ID, str(p)))