-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_sasrec_hardnegmining.py
165 lines (120 loc) · 5.57 KB
/
run_sasrec_hardnegmining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import argparse
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from models import SASRec
from dataset import Recall_Train_SASRec_HardNegMining_Dataset
from utils import load_pkl
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=1, help='epochs.')
parser.add_argument('--batch_size', type=int, default=1024, help='train batch size.')
parser.add_argument('--infer_batch_size', type=int, default=1024, help='inference batch size.')
parser.add_argument('--emb_dim', type=int, default=8, help='embedding dimension.')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate.')
parser.add_argument('--seq_len', type=int, default=3, help='length of behaivor sequence')
parser.add_argument('--cuda', type=int, default=0, help='cuda device.')
parser.add_argument('--print_freq', type=int, default=200, help='frequency of print.')
parser.add_argument('--tag', type=str, default="1st", help='exp tag.')
parser.add_argument('--neg_num', type=int, default=3, help='number of negative samples')
parser.add_argument('--flow_negs', type=str, default='mcd_prerank_neg', help='model name.')
parser.add_argument('--flow_neg_nums', type=str, default=3, help='number of negative samples')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
for k,v in vars(args).items():
print(f"{k}:{v}")
#prepare data
prefix = "../data"
realshow_prefix = os.path.join(prefix, "realshow")
path_to_train_csv_lst = []
with open("./file.txt", mode='r') as f:
lines = f.readlines()
for line in lines:
tmp_csv_path = os.path.join(realshow_prefix, line.strip()+'.feather')
path_to_train_csv_lst.append(tmp_csv_path)
num_of_train_csv = len(path_to_train_csv_lst)
print("training files:")
print(f"number of train_csv: {num_of_train_csv}")
for idx, filepath in enumerate(path_to_train_csv_lst):
print(f"{idx}: {filepath}")
#prepare seq
seq_prefix = os.path.join(prefix, "seq_effective_50_dict")
path_to_train_seq_pkl_lst = []
with open("./file.txt", mode='r') as f:
lines = f.readlines()
for line in lines:
tmp_seq_pkl_path = os.path.join(seq_prefix, line.strip()+'.pkl')
path_to_train_seq_pkl_lst.append(tmp_seq_pkl_path)
print("training seq files:")
for idx, filepath in enumerate(path_to_train_seq_pkl_lst):
print(f"{idx}: {filepath}")
#prepare request_id
request_id_prefix = os.path.join(prefix, "request_id_dict")
path_to_request_id_pkl_lst = []
with open("./file.txt", mode='r') as f:
lines = f.readlines()
for line in lines:
tmp_request_id_pkl_path = os.path.join(request_id_prefix, line.strip()+'.pkl')
path_to_request_id_pkl_lst.append(tmp_request_id_pkl_path)
print("training request_id files:")
for idx, filepath in enumerate(path_to_request_id_pkl_lst):
print(f"{idx}: {filepath}")
#prepare id_cnt
others_prefix = os.path.join(prefix, "others")
path_to_id_cnt_pkl = os.path.join(others_prefix, "id_cnt.pkl")
print(f"path_to_id_cnt_pkl: {path_to_id_cnt_pkl}")
id_cnt_dict = load_pkl(path_to_id_cnt_pkl)
for k,v in id_cnt_dict.items():
print(f"{k}:{v}")
#prepare negatives
video_prefix = os.path.join(others_prefix, "realshow_video_info_daily")
path_to_video_info_feather_lst = []
with open("./file.txt", mode='r') as f:
lines = f.readlines()
for line in lines:
tmp_video_feather_path = os.path.join(video_prefix, line.strip()+'.feather')
path_to_video_info_feather_lst.append(tmp_video_feather_path)
print("realshow daily negative")
for idx, filepath in enumerate(path_to_video_info_feather_lst):
print(f"{idx}: {filepath}")
#prepare model
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.cuda)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"device: {device}")
model = SASRec(args.emb_dim, args.seq_len, args.neg_num, device, id_cnt_dict).to(device)
loss_fn = nn.LogSigmoid().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
#training
for epoch in range(args.epochs):
for n_day in range(num_of_train_csv):
train_dataset = Recall_Train_SASRec_HardNegMining_Dataset(
path_to_train_csv_lst[n_day],
args.seq_len, args.neg_num,
path_to_train_seq_pkl_lst[n_day],
path_to_request_id_pkl_lst[n_day],
path_to_video_info_feather_lst[n_day],
args.flow_negs,
args.flow_neg_nums
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=1,
drop_last=False
)
for iter_step, inputs in enumerate(train_loader):
inputs_LongTensor = [torch.LongTensor(inp.numpy()).to(device) for inp in inputs]
tgt_logits, neg_logits = model(inputs_LongTensor) #b
pos_logits_expand = tgt_logits.repeat_interleave(args.neg_num)
loss = -loss_fn(pos_logits_expand-neg_logits).mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if iter_step % args.print_freq == 0:
print(f"Day:{n_day}\t[Epoch/iter]:{epoch:>3}/{iter_step:<4}\tloss:{loss.detach().cpu().item():.6f}")
path_to_save_model=f"./checkpoints/bs-{args.batch_size}_lr-{args.lr}_neg_num-{args.neg_num}_flow_negs-{args.flow_negs}_flow_neg_nums-{args.flow_neg_nums}_{args.tag}.pkl"
torch.save(model.state_dict(), path_to_save_model)
print(f"save model to {path_to_save_model} DONE.")