-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathclient.py
911 lines (810 loc) · 32 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
import warnings
from functools import wraps
from typing import AnyStr, ByteString, List, Sequence, Union
import numpy as np
from deprecated import deprecated
from redis import StrictRedis
from redisai import command_builder as builder
from redisai.dag import Dag
from redisai.pipeline import Pipeline
from redisai.postprocessor import Processor
processor = Processor()
class Client(StrictRedis):
"""
Redis client build specifically for the RedisAI module. It takes all the necessary
parameters to establish the connection and an optional ``debug`` parameter on
initialization
Parameters
----------
debug : bool
If debug mode is ON, then each command that is sent to the server is
printed to the terminal
enable_postprocess : bool
Flag to enable post processing. If enabled, all the bytestring-ed returns
are converted to python strings recursively and key value pairs will be converted
to dictionaries. Also note that, this flag doesn't work with pipeline() function
since pipeline function could have native redis commands (along with RedisAI
commands)
Example
-------
>>> from redisai import Client
>>> con = Client(host='localhost', port=6379)
"""
REDISAI_COMMANDS_RESPONSE_CALLBACKS = {}
def __init__(self, debug=False, enable_postprocess=True, *args, **kwargs):
super().__init__(*args, **kwargs)
if debug:
self.execute_command = enable_debug(super().execute_command)
self.enable_postprocess = enable_postprocess
def pipeline(self, transaction: bool = True, shard_hint: bool = None) -> "Pipeline":
"""
It follows the same pipeline implementation of native redis client but enables it
to access redisai operation as well. This function is experimental in the
current release.
Example
-------
>>> pipe = con.pipeline(transaction=False)
>>> pipe = pipe.set('nativeKey', 1)
>>> pipe = pipe.tensorset('redisaiKey', np.array([1, 2]))
>>> pipe.execute()
[True, b'OK']
"""
return Pipeline(
self.enable_postprocess,
self.connection_pool,
self.response_callbacks,
transaction=transaction,
shard_hint=shard_hint,
)
def dag(
self,
load: Sequence = None,
persist: Sequence = None,
routing: AnyStr = None,
timeout: int = None,
readonly: bool = False
) -> "Dag":
"""
It returns a DAG object on which other DAG-allowed operations can be called. For
more details about DAG in RedisAI, refer to the RedisAI documentation.
Parameters
----------
load : Union[AnyStr, List[AnyStr]]
Load the list of given values from the keyspace to DAG scope
persist : Union[AnyStr, List[AnyStr]]
For each tensor key in the given list, write its values to the keyspace from
DAG scope after the DAG execution is finished.
routing : AnyStr
Denotes a key to be used in the DAG or a tag that will assist in routing the dag
execution command to the right shard. Redis will verify that all potential key
accesses are done to within the target shard.
timeout : int
The max number on milisecinds that may pass before the request is prossced
(meaning that the result will not be computed after that time and TIMEDOUT
is returned in that case)
readonly : bool
If True, it triggers AI.DAGRUN_RO, the read only DAG which cannot write (PERSIST) to
the keyspace. But since it can't write, it can execute on replicas
Returns
-------
Any
Dag object which holds other operations permitted inside DAG as attributes
Example
-------
>>> con.tensorset('tensor', ...)
'OK'
>>> con.modelstore('model', ...)
'OK'
>>> dag = con.dag(load=['tensor'], persist=['output'])
>>> dag.tensorset('another', ...)
>>> dag.modelrun('model', inputs=['tensor', 'another'], outputs=['output'])
>>> output = dag.tensorget('output').run()
>>> # You can even chain the operations
>>> result = dag.tensorset(**akwargs).modelrun(**bkwargs).tensorget(**ckwargs).run()
"""
return Dag(load, persist, routing, timeout, self.execute_command, readonly)
def loadbackend(self, identifier: AnyStr, path: AnyStr) -> str:
"""
RedisAI by default won't load any backends. User can either explicitly
load the backend by using this function or let RedisAI load the required
backend from the default path on-demand.
Parameters
----------
identifier : str
Representing which backend. Allowed values - TF, TFLITE, TORCH & ONNX
path: str
Path to the shared object of the backend
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> con.loadbackend('TORCH', '/path/to/the/backend/redisai_torch.so')
'OK'
"""
args = builder.loadbackend(identifier, path)
res = self.execute_command(args)
return res if not self.enable_postprocess else processor.loadbackend(res)
def config(self, name: str, value: Union[str, int, None] = None) -> str:
"""
Get/Set configuration item. Current available configurations are: BACKENDSPATH and MODEL_CHUNK_SIZE.
For more details, see: https://oss.redis.com/redisai/master/commands/#aiconfig.
If value is given - the configuration under name will be overriten.
Parameters
----------
name: str
RedisAI config item to retreive/override (BACKENDSPATH / MODEL_CHUNK_SIZE).
value: Union[str, int]
Value to set the config item with (if given).
Returns
-------
The current configuration value if value is None,
'OK' if value was given and configuration overitten succeeded,
raise an exception otherwise
Example
-------
>>> con.config('MODEL_CHUNK_SIZE', 128 * 1024)
'OK'
>>> con.config('BACKENDSPATH', '/my/backends/path')
'OK'
>>> con.config('BACKENDSPATH')
'/my/backends/path'
>>> con.config('MODEL_CHUNK_SIZE')
'131072'
"""
args = builder.config(name, value)
res = self.execute_command(args)
return res if not self.enable_postprocess or not isinstance(res, bytes) else processor.config(res)
def modelstore(
self,
key: AnyStr,
backend: str,
device: str,
data: ByteString,
batch: int = None,
minbatch: int = None,
minbatchtimeout: int = None,
tag: AnyStr = None,
inputs: Union[AnyStr, List[AnyStr]] = None,
outputs: Union[AnyStr, List[AnyStr]] = None,
) -> str:
"""
Set the model on provided key.
Parameters
----------
key : AnyStr
Key name
backend : str
Backend name. Allowed backends are TF, TORCH, TFLITE, ONNX
device : str
Device name. Allowed devices are CPU and GPU. If multiple GPUs are available,
it can be specified using the format GPU:<gpu number>. For example: GPU:0
data : bytes
Model graph read as bytes string
batch : int
Number of batches for doing auto-batching
minbatch : int
Minimum number of samples required in a batch for model execution
minbatchtimeout : int
The max number of miliseconds for which the engine will not trigger an execution
if the number of samples is lower than minbatch (after minbatchtimeout is passed,
the execution will start even if minbatch jas not reached)
tag : AnyStr
Any string that will be saved in RedisAI as tag for the model
inputs : Union[AnyStr, List[AnyStr]]
Input node(s) in the graph. Required only Tensorflow graphs
outputs : Union[AnyStr, List[AnyStr]]
Output node(s) in the graph Required only for Tensorflow graphs
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> # Torch model
>>> model_path = os.path.join('path/to/TorchScriptModel.pt')
>>> model = open(model_path, 'rb').read()
>>> con.modeltore("model", 'torch', 'cpu', model, tag='v1.0')
'OK'
>>> # Tensorflow model
>>> model_path = os.path.join('/path/to/tf_frozen_graph.pb')
>>> model = open(model_path, 'rb').read()
>>> con.modelstore('m', 'tf', 'cpu', model,
... inputs=['a', 'b'], outputs=['mul'], tag='v1.0')
'OK'
"""
chunk_size = self.config('MODEL_CHUNK_SIZE')
args = builder.modelstore(
key,
backend,
device,
data,
batch,
minbatch,
minbatchtimeout,
tag,
inputs,
outputs,
chunk_size=chunk_size
)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.modelstore(res)
@deprecated(version="1.2.0", reason="Use modelstore instead")
def modelset(
self,
key: AnyStr,
backend: str,
device: str,
data: ByteString,
batch: int = None,
minbatch: int = None,
tag: AnyStr = None,
inputs: Union[AnyStr, List[AnyStr]] = None,
outputs: Union[AnyStr, List[AnyStr]] = None,
) -> str:
"""
Set the model on provided key.
Parameters
----------
key : AnyStr
Key name
backend : str
Backend name. Allowed backends are TF, TORCH, TFLITE, ONNX
device : str
Device name. Allowed devices are CPU and GPU. If multiple GPUs are available,
it can be specified using the format GPU:<gpu number>. For example: GPU:0
data : bytes
Model graph read as bytes string
batch : int
Number of batches for doing auto-batching
minbatch : int
Minimum number of samples required in a batch for model execution
tag : AnyStr
Any string that will be saved in RedisAI as tag for the model
inputs : Union[AnyStr, List[AnyStr]]
Input node(s) in the graph. Required only Tensorflow graphs
outputs : Union[AnyStr, List[AnyStr]]
Output node(s) in the graph Required only for Tensorflow graphs
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> # Torch model
>>> model_path = os.path.join('path/to/TorchScriptModel.pt')
>>> model = open(model_path, 'rb').read()
>>> con.modelset("model", 'torch', 'cpu', model, tag='v1.0')
'OK'
>>> # Tensorflow model
>>> model_path = os.path.join('/path/to/tf_frozen_graph.pb')
>>> model = open(model_path, 'rb').read()
>>> con.modelset('m', 'tf', 'cpu', model,
... inputs=['a', 'b'], outputs=['mul'], tag='v1.0')
'OK'
"""
args = builder.modelset(
key, backend, device, data, batch, minbatch, tag, inputs, outputs
)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.modelset(res)
def modelget(self, key: AnyStr, meta_only=False) -> dict:
"""
Fetch the model details and the model blob back from RedisAI
Parameters
----------
key : AnyStr
Model key in RedisAI
meta_only : bool
If True, only the meta data will be fetched, not the model blob
Returns
-------
dict
A dictionary of model details such as device, backend etc. The model
blob will be available at the key 'blob'
Example
-------
>>> con.modelget('model', meta_only=True)
{'backend': 'TF', 'device': 'cpu', 'tag': 'v1.0'}
"""
args = builder.modelget(key, meta_only)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.modelget(res)
def modeldel(self, key: AnyStr) -> str:
"""
Delete the model from the RedisAI server
Parameters
----------
key : AnyStr
Key of the model to be deleted
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> con.modeldel('model')
'OK'
"""
args = builder.modeldel(key)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.modeldel(res)
def modelexecute(
self,
key: AnyStr,
inputs: Union[AnyStr, List[AnyStr]],
outputs: Union[AnyStr, List[AnyStr]],
timeout: int = None,
) -> str:
"""
Run the model using input(s) which are already in the scope and are associated
to some keys. Modelexecute also needs the output key name(s) to store the output
from the model. The number of outputs from the model and the number of keys
provided here must be same. Otherwise, RedisAI throws an error
Parameters
----------
key : str
Model key to run
inputs : Union[AnyStr, List[AnyStr]]
Tensor(s) which is already saved in the RedisAI using a tensorset call. These
tensors will be used as the inputs for the modelexecute
outputs : Union[AnyStr, List[AnyStr]]
keys on which the outputs to be saved. If those keys exist already,
modelexecute will overwrite them with new values
timeout : int
The max number on milisecinds that may pass before the request is prossced
(meaning that the result will not be computed after that time and TIMEDOUT
is returned in that case
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> con.modelstore('m', 'tf', 'cpu', model_pb,
... inputs=['a', 'b'], outputs=['mul'], tag='v1.0')
'OK'
>>> con.tensorset('a', (2, 3), dtype='float')
'OK'
>>> con.tensorset('b', (2, 3), dtype='float')
'OK'
>>> con.modelexecute('m', ['a', 'b'], ['c'])
'OK'
"""
args = builder.modelexecute(key, inputs, outputs, timeout)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.modelexecute(res)
@deprecated(version="1.2.0", reason="Use modelexecute instead")
def modelrun(
self,
key: AnyStr,
inputs: Union[AnyStr, List[AnyStr]],
outputs: Union[AnyStr, List[AnyStr]],
) -> str:
"""
Run the model using input(s) which are already in the scope and are associated
to some keys. Modelrun also needs the output key name(s) to store the output
from the model. The number of outputs from the model and the number of keys
provided here must be same. Otherwise, RedisAI throws an error
Parameters
----------
key : str
Model key to run
inputs : Union[AnyStr, List[AnyStr]]
Tensor(s) which is already saved in the RedisAI using a tensorset call. These
tensors will be used as the input for the modelrun
outputs : Union[AnyStr, List[AnyStr]]
keys on which the outputs to be saved. If those keys exist already, modelrun
will overwrite them with new values
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> con.modelstore('m', 'tf', 'cpu', model_pb,
... inputs=['a', 'b'], outputs=['mul'], tag='v1.0')
'OK'
>>> con.tensorset('a', (2, 3), dtype='float')
'OK'
>>> con.tensorset('b', (2, 3), dtype='float')
'OK'
>>> con.modelrun('m', ['a', 'b'], ['c'])
'OK'
"""
args = builder.modelrun(key, inputs, outputs)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.modelrun(res)
def modelscan(self) -> List[List[AnyStr]]:
"""
Returns the list of all the models in the RedisAI server. Modelscan API is
currently experimental and might be removed or changed in the future without
warning
Returns
-------
List[List[AnyStr]]
List of list of models and tags for each model if they existed
Example
-------
>>> con.modelscan()
[['pt_model', ''], ['m', 'v1.2']]
"""
warnings.warn(
"Experimental: Model List API is experimental and might change "
"in the future without any notice",
UserWarning,
)
args = builder.modelscan()
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.modelscan(res)
def tensorset(
self,
key: AnyStr,
tensor: Union[np.ndarray, list, tuple],
shape: Sequence[int] = None,
dtype: str = None,
) -> str:
"""
Set the tensor to a key in RedisAI
Parameters
----------
key : AnyStr
The name of the tensor
tensor : Union[np.ndarray, list, tuple]
A `np.ndarray` object or Python list or tuple
shape : Sequence[int]
Shape of the tensor. Required if `tensor` is list or tuple
dtype : str
Data type of the tensor. Required if `tensor` is list or tuple
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> con.tensorset('a', (2, 3), dtype='float')
'OK'
>>> input_array = np.array([2, 3], dtype=np.float32)
>>> con.tensorset('x', input_array)
'OK'
"""
args = builder.tensorset(key, tensor, shape, dtype)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.tensorset(res)
def tensorget(
self,
key: AnyStr,
as_numpy: bool = True,
as_numpy_mutable: bool = False,
meta_only: bool = False,
) -> Union[dict, np.ndarray]:
"""
Retrieve the value of a tensor from the server. By default it returns the numpy
array but it can be controlled using the `as_type` and `meta_only` argument.
Parameters
----------
key : AnyStr
The name of the tensor
as_numpy : bool
If True, returns a numpy.ndarray. Returns the value as a list and the
metadata in a dictionary if False. This flag also decides how to fetch
the value from the RedisAI server, which also has performance implications
as_numpy_mutable : bool
If True, returns a a mutable numpy.ndarray object by copy the tensor data. Otherwise (as long as_numpy=True)
the returned numpy.ndarray will use the original tensor buffer and will be for read-only
meta_only : bool
If True, the value is not retrieved, only the shape and the type
Returns
-------
Union[dict, np.ndarray]
Returns a dictionary of data or a numpy array. Default is numpy array
Example
-------
>>> con.tensorget('x')
array([2, 3, 4])
>>> con.tensorget('x' as_numpy=False)
{'values': [2, 3, 4], 'dtype': 'INT64', 'shape': [3]}
>>> con.tensorget('x', meta_only=True)
{'dtype': 'INT64', 'shape': [3]}
"""
args = builder.tensorget(key, as_numpy, meta_only)
res = self.execute_command(*args)
return (
res
if not self.enable_postprocess
else processor.tensorget(res, as_numpy, as_numpy_mutable, meta_only)
)
def scriptstore(
self, key: AnyStr, device: str, script: str, entry_points: Union[str, Sequence[str]], tag: AnyStr = None
) -> str:
"""
Set the script to RedisAI. The difference from scriptset is that in scriptstore
you must specify entry points within your script. These functions must have specific
signature: 'def entry_point(tensors: List[Tensor], keys: List[str], args: List[str])'.
RedisAI uses the TorchScript engine to execute the script. So the script should
have only TorchScript supported constructs. That being said, it's important to
mention that using redisai script to do post processing or pre processing for a
Tensorflow (or any other backend) is completely valid. For more details about
TorchScript and supported ops, checkout TorchScript documentation.
Parameters
----------
key : AnyStr
Script key at the server
device : str
Device name. Allowed devices are CPU and GPU. If multiple GPUs are available.
it can be specified using the format GPU:<gpu number>. For example: GPU:0
script : str
Script itself, as a Python string
entry_points : Union[str, Sequence[str]]
A list of functions in the script that may serve as entry point for the
execution. Each entry point must have the specify signature:
def entry_point(tensors: List[Tensor], keys: List[str], args: List[str]))
Note that the script may contain additional helper functions that doesn't
have to follow this signature.
tag : AnyStr
Any string that will be saved in RedisAI as tag for the script
Returns
-------
str
'OK' if success, raise an exception otherwise
Note
----
Even though ``script`` is pure Python code, it's a subset of Python language and not
all the Python operations are supported. For more details, checkout TorchScript
documentation. It's also important to note that that the script is executed on a high
performance C++ runtime instead of the Python interpreter. And hence ``script`` should
not have any import statements (A common mistake people make all the time)
Example
-------
>>> script = r'''
>>> def bar(tensors: List[Tensor], keys: List[str], args: List[str]):
>>> a = tensors[0]
>>> b = tensors[1]
>>> return a + b
>>>'''
>>> con.scriptstore('ket', 'cpu', script, 'bar')
'OK'
"""
args = builder.scriptstore(key, device, script, entry_points, tag)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.scriptstore(res)
@deprecated(version="1.2.0", reason="Use scriptstore instead")
def scriptset(
self, key: AnyStr, device: str, script: str, tag: AnyStr = None
) -> str:
"""
Set the script to RedisAI. Action similar to Modelset. RedisAI uses the TorchScript
engine to execute the script. So the script should have only TorchScript supported
constructs. That being said, it's important to mention that using redisai script
to do post processing or pre processing for a Tensorflow (or any other backend)
is completely valid. For more details about TorchScript and supported ops,
checkout TorchScript documentation.
Parameters
----------
key : AnyStr
Script key at the server
device : str
Device name. Allowed devices are CPU and GPU. If multiple GPUs are available.
it can be specified using the format GPU:<gpu number>. For example: GPU:0
script : str
Script itself, as a Python string
tag : AnyStr
Any string that will be saved in RedisAI as tag for the model
Returns
-------
str
'OK' if success, raise an exception otherwise
Note
----
Even though ``script`` is pure Python code, it's a subset of Python language and not
all the Python operations are supported. For more details, checkout TorchScript
documentation. It's also important to note that that the script is executed on a high
performance C++ runtime instead of the Python interpreter. And hence ``script`` should
not have any import statements (A common mistake people make all the time)
Example
-------
>>> script = open(scriptpath).read()
>>> con.scriptset('ket', 'cpu', script)
'OK'
"""
args = builder.scriptset(key, device, script, tag)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.scriptset(res)
def scriptget(self, key: AnyStr, meta_only=False) -> dict:
"""
Get the saved script from RedisAI. Operation similar to model get
Parameters
----------
key : AnyStr
Key of the script
meta_only : bool
If True, only the meta data will be fetched, not the script itself
Returns
-------
dict
Dictionary of script details which includes the script at the key ``source``
Example
-------
>>> con.scriptget('ket', meta_only=True)
{'device': 'cpu'}
"""
args = builder.scriptget(key, meta_only)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.scriptget(res)
def scriptdel(self, key: AnyStr) -> str:
"""
Delete the script from the RedisAI server
Parameters
----------
key : AnyStr
Script key to be deleted
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> con.scriptdel('ket')
'OK'
"""
args = builder.scriptdel(key)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.scriptdel(res)
@deprecated(version="1.2.0", reason="Use scriptexecute instead")
def scriptrun(
self,
key: AnyStr,
function: str,
inputs: Union[AnyStr, Sequence[AnyStr]],
outputs: Union[AnyStr, Sequence[AnyStr]],
) -> str:
"""
Run an already set script. Similar to modelrun
Parameters
----------
key : AnyStr
Script key
function : str
Name of the function in the ``script``
inputs : Union[AnyStr, List[AnyStr]]
Tensor(s) which is already saved in the RedisAI using a tensorset call. These
tensors will be used as the input for the modelrun
outputs : Union[AnyStr, List[AnyStr]]
keys on which the outputs to be saved. If those keys exist already, scriptrun
will overwrite them with new values
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> con.scriptrun('ket', 'bar', inputs=['a', 'b'], outputs=['c'])
'OK'
"""
args = builder.scriptrun(key, function, inputs, outputs)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.scriptrun(res)
def scriptexecute(
self,
key: AnyStr,
function: str,
keys: Union[AnyStr, Sequence[AnyStr]] = None,
inputs: Union[AnyStr, Sequence[AnyStr]] = None,
args: Union[AnyStr, Sequence[AnyStr]] = None,
outputs: Union[AnyStr, Sequence[AnyStr]] = None,
timeout: int = None,
) -> str:
"""
Run an already set script. Similar to modelexecute.
Must specify keys or inputs.
Parameters
----------
key : AnyStr
Script key
function : str
Name of the function in the ``script``
keys : Union[AnyStr, Sequence[AnyStr]]
Denotes the list of Redis key names that the script will access to
during its execution, for both read and/or write operations.
inputs : Union[AnyStr, Sequence[AnyStr]]
Denotes the input tensors list.
args : Union[AnyStr, Sequence[AnyStr]]
Denotes the list of additional arguments that a user can send to the
script. All args are sent as strings, but can be casted to other types
supported by torch script, such as int, or float.
outputs : Union[AnyStr, List[AnyStr]]
Denotes the output tensors keys' list. If those keys exist already,
scriptexecute will overwrite them with new values.
timeout : int
The max number on milisecinds that may pass before the request is prossced
(meaning that the result will not be computed after that time and TIMEDOUT
is returned in that case).
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> con.scriptexecute('myscript', 'bar', inputs=['a', 'b'], outputs=['c'])
'OK'
>>> con.scriptexecute('myscript{tag}', 'addn',
>>> inputs=['mytensor1{tag}', 'mytensor2{tag}', 'mytensor3{tag}'],
>>> args=['5.0'],
>>> outputs=['result{tag}'])
'OK'
"""
args = builder.scriptexecute(key, function, keys, inputs, args, outputs, timeout)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.scriptexecute(res)
def scriptscan(self) -> List[List[AnyStr]]:
"""
Returns the list of all the script in the RedisAI server. Scriptscan API is
currently experimental and might remove or change in the future without warning
Returns
-------
List[List[AnyStr]]
List of list of scripts and tags for each script if they existed
Example
-------
>>> con.scriptscan()
[['ket1', 'v1.0'], ['ket2', '']]
"""
warnings.warn(
"Experimental: Script List API is experimental and might change "
"in the future without any notice",
UserWarning,
)
args = builder.scriptscan()
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.scriptscan(res)
def infoget(self, key: AnyStr) -> dict:
"""
Get information such as
- How long since the model has been running
- How many samples have been processed
- How many calls handled
- How many errors raised
- etc.
Parameters
----------
key : AnyStr
Model key
Returns
-------
dict
Dictionary of model run details
Example
-------
>>> con.infoget('m')
{'key': 'm', 'type': 'MODEL', 'backend': 'TF', 'device': 'cpu', 'tag': '',
'duration': 0, 'samples': 0, 'calls': 0, 'errors': 0}
"""
args = builder.infoget(key)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.infoget(res)
def inforeset(self, key: AnyStr) -> str:
"""
Reset the run information about the model
Parameters
----------
key : AnyStr
Model key
Returns
-------
str
'OK' if success, raise an exception otherwise
Example
-------
>>> con.inforeset('m')
'OK'
"""
args = builder.inforeset(key)
res = self.execute_command(*args)
return res if not self.enable_postprocess else processor.inforeset(res)
def enable_debug(f):
@wraps(f)
def wrapper(*args):
print(*args)
return f(*args)
return wrapper