|
56 | 56 | ##' @param data.split.table \emph{deprecated}, now called \code{CV.user.table}
|
57 | 57 | ##' @param do.full.models \emph{deprecated}, now called \code{CV.do.full.models}
|
58 | 58 | ##'
|
59 |
| -##' @param OPT.data.type a \code{character} corresponding to the data type to |
60 |
| -##' be used, must be either \code{binary}, \code{binary.PA}, \code{abundance}, |
61 |
| -##' \code{compositional} |
62 |
| -##' @param OPT.strategy a \code{character} corresponding to the method to |
63 |
| -##' select models' parameters values, must be either \code{default}, |
64 |
| -##' \code{bigboss}, \code{user.defined}, \code{tuned} |
| 59 | +##' @param OPT.data.type a \code{character} corresponding to the data type to be used, must be |
| 60 | +##' either \code{binary}, \code{binary.PA}, \code{abundance}, \code{compositional} |
| 61 | +##' @param OPT.strategy a \code{character} corresponding to the method to select models' |
| 62 | +##' parameters values, must be either \code{default}, \code{bigboss}, \code{user.defined}, |
| 63 | +##' \code{tuned} |
65 | 64 | ##' @param OPT.val.list (\emph{optional, default} \code{NULL}) \cr
|
66 | 65 | ##' A \code{list} containing parameters values for some (all) models
|
67 | 66 | ##' @param OPT.user (\emph{optional, default} \code{TRUE}) \cr
|
|
120 | 119 | ##' \code{\link{BIOMOD_FormatingData}}), \cr \code{PA.nb.rep *(nb.rep + 1)} models will be
|
121 | 120 | ##' created.}
|
122 | 121 | ##'
|
123 |
| -##' \item{models}{The set of models to be calibrated on the data. 10 modeling techniques |
| 122 | +##' \item{models}{The set of models to be calibrated on the data. 12 modeling techniques |
124 | 123 | ##' are currently available :
|
125 | 124 | ##' \itemize{
|
126 |
| -##' \item \code{GLM} : Generalized Linear Model (\code{\link[stats]{glm}}) |
| 125 | +##' \item \code{ANN} : Artificial Neural Network (\code{\link[nnet]{nnet}}) |
| 126 | +##' \item \code{CTA} : Classification Tree Analysis (\code{\link[rpart]{rpart}}) |
| 127 | +##' \item \code{FDA} : Flexible Discriminant Analysis (\code{\link[mda]{fda}}) |
127 | 128 | ##' \item \code{GAM} : Generalized Additive Model (\code{\link[gam]{gam}}, \code{\link[mgcv]{gam}}
|
128 | 129 | ##' or \code{\link[mgcv]{bam}}) \cr
|
129 | 130 | ##' (see \code{\link{bm_ModelingOptions} for details on algorithm selection})
|
130 | 131 | ##' \item \code{GBM} : Generalized Boosting Model, or usually called Boosted Regression Trees
|
131 | 132 | ##' (\code{\link[gbm]{gbm}})
|
132 |
| -##' \item \code{CTA} : Classification Tree Analysis (\code{\link[rpart]{rpart}}) |
133 |
| -##' \item \code{ANN} : Artificial Neural Network (\code{\link[nnet]{nnet}}) |
134 |
| -##' \item \code{SRE} : Surface Range Envelop or usually called BIOCLIM |
135 |
| -##' \item \code{FDA} : Flexible Discriminant Analysis (\code{\link[mda]{fda}}) |
| 133 | +##' \item \code{GLM} : Generalized Linear Model (\code{\link[stats]{glm}}) |
136 | 134 | ##' \item \code{MARS} : Multiple Adaptive Regression Splines (\code{\link[earth]{earth}})
|
137 |
| -##' \item \code{RF} : Random Forest (\code{\link[randomForest]{randomForest}}) |
138 | 135 | ##' \item \code{MAXENT} : Maximum Entropy
|
139 | 136 | ##' (\url{https://biodiversityinformatics.amnh.org/open_source/maxent/})
|
140 | 137 | ##' \item \code{MAXNET} : Maximum Entropy (\code{\link[maxnet]{maxnet}})
|
| 138 | +##' \item \code{RF} : Random Forest (\code{\link[randomForest]{randomForest}}) |
| 139 | +##' \item \code{SRE} : Surface Range Envelop or usually called BIOCLIM |
141 | 140 | ##' \item \code{XGBOOST} : eXtreme Gradient Boosting Training (\code{\link[xgboost]{xgboost}})
|
142 | 141 | ##' }}
|
143 | 142 | ##'
|
|
0 commit comments